Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
APMIS ; 131(2): 61-76, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36511842

ABSTRACT

Miscarriage is one of the main causes of reproductive loss, which can lead to a number of physical and psychological complications and other long-term consequences. However, the role of vaginal and uterine microbiome in such complications is poorly understood. To review the published data on the function of the female reproductive tract microbiome in the pathogenesis of early miscarriages. The articles published over the past 20 years and deposited in PubMed, Google Academy, Scopus, Elibrary, ResearchGate, and EBSCO databases were analyzed. The review presents new data on the impact of the vaginal and uterine microbiome on the local immunity, including defense against sexually transmitted infections, and its association with other factors of miscarriages. The studies on the microbiome of non-pregnant women with recurrent miscarriages in the anamnesis, patients undergoing IVF, and pregnant women with miscarriages, as well as new directions in the microbiome research are discussed. The majority of studies have demonstrated that the dominant species of the vaginal and uterine microbiome in patients with early miscarriages are non-Lactobacillus bacteria. As many of these bacteria have not previously been detected by cultural studies and their role in obstetric complications is not well defined, further research on the female reproductive tract microbiome, including the microbiome of the cervix uteri, is needed to develop new approaches for the prognosis and prevention of miscarriages.


Subject(s)
Abortion, Spontaneous , Microbiota , Pregnancy , Female , Humans , Abortion, Spontaneous/etiology , Prognosis , Bacteria , Vagina/microbiology
2.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890114

ABSTRACT

Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used in the treatment of various types of tumors. However, cisplatin has several serious adverse effects, such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable of preventing cisplatin-induced neurotoxicity. Methylene blue (MB) and AzurB (AzB) are able to neutralize the neurotoxicity caused by cisplatin by protecting nerve cells as a result of the activation of the Ntf2 signaling pathway. We have shown that cisplatin impairs learning in the Morris water maze. This is due to an increase in the amount of mtDNA damage, a decrease in the expression of most antioxidant genes, the main determinant of the induction of which is the Nrf2/ARE signaling pathway, and genes involved in mitophagy regulation in the cortex. The expression of genes involved in long-term potentiation was suppressed in the hippocampus of cisplatin-injected mice. MB in most cases prevented cisplatin-induced impairment of learning and decrease of gene expression in the cortex. AzB prevented the cisplatin-induced decrease of genes in the hippocampus. Also, cisplatin induced disbalance in the gut microbiome, decreased levels of Actinotalea and Prevotella, and increased levels of Streptococcus and Veillonella. MB and AzB also prevented cisplatin-induced changes in the bacterial composition of the gut microbiome.

3.
Animals (Basel) ; 12(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35158643

ABSTRACT

Determining the taxonomic composition of microbial consortia of the piglet intestine is of great importance for pig production. However, knowledge on the variety of the intestinal microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a high morbidity and mortality that causes great economic damage to the pig industry. In this study, we investigated the microbiome of various sections of the piglet intestine and compared the microbiome composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA gene. The results showed that bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the diarrhea group. Although some bacteria of this genus are commensals, a small number of species may be associated with the development of diarrhea in piglets. Therefore, our results indicate that the gut microbiome may be an important factor in the development of diarrhea in piglets.

4.
Life Sci ; 293: 120333, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051422

ABSTRACT

Ageing is the most significant risk factor for cardiovascular diseases. l-Carnitine has a potent cardioprotective effect and its synthesis decreases during ageing. At the same time, there are pharmaceuticals, such as mildronate which, on the contrary, are aimed at reducing the concentration of l-carnitine in the heart and lead to slows down the oxidation of fatty acids in mitochondria. Despite this, both l-carnitine and mildronate are positioned as cardio protectors. We showed that l-carnitine supplementation to the diet of 15-month-old mice increased expression of the PGC-1α gene, which is responsible for the regulation of fatty acid oxidation, and the Nrf2 gene, which is responsible for protecting mitochondria by regulating the expression of antioxidants and mitophagy, in the heart. Mildronate activated the expression of genes that regulate glucose metabolism. Probably, this metabolic shift may protect the mitochondria of the heart from the accumulation of acyl-carnitine, which occurs during the oxidation of fatty acids under oxygen deficiency. Both pharmaceuticals impacted the gut microbiome bacterial composition. l-Carnitine increased the level of Lachnoanaerobaculum and [Eubacterium] hallii group, mildronate increased the level of Bifidobacterium, Rikinella, Christensenellaceae. Considered, that these bacteria for protection the organism from various pathogens and chronic inflammation. Thus, we suggested that the positive effects of both drugs on the mitochondria metabolism and gut microbiome bacterial composition may contribute to the protection of the heart during ageing.


Subject(s)
Aging/metabolism , Cardiovascular Agents/pharmacology , Carnitine/pharmacology , Gastrointestinal Microbiome/physiology , Methylhydrazines/pharmacology , Mitochondria, Heart/metabolism , Aging/drug effects , Animals , Bifidobacterium/metabolism , DNA, Mitochondrial/metabolism , Female , Gastrointestinal Microbiome/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects
5.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576870

ABSTRACT

Mastitis is the most common disease for cattle, causing great economic losses for the global dairy industry. Recent studies indicate the multi-agent and microbiome diversity of this disease. To understand the nature of mastitis and investigate the role of the microbiome in the development of pathologies in the udder of bovines, we performed NGS sequencing of the 16S rRNA gene of cow's milk with pathologies of the udder. The obtained data show a significant increase in the Cutibacterium, Blautia, Clostridium sensu stricto 2, Staphylococcus, Streptococcus and Microbacterium genera for groups of cows with udder pathologies. Increasing relative abundance of the Staphylococcus and Streptococcus genera was associated with subclinical mastitis. Our data show that a relative increase in abundance of the Staphylococcus and Microbacterium genera may be an early sign of infection. We have shown, for the first time, an increase in the Colidextribacter, Paeniclostridium and Turicibacter genera in groups of cows with mastitis. These results expand our understanding of the role of the microbiome in the development of bovine mastitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...