Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(1): eabq4558, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36608135

ABSTRACT

Critical transition can occur in many real-world systems. The ability to forecast the occurrence of transition is of major interest in a range of contexts. Various early warning signals (EWSs) have been developed to anticipate the coming critical transition or distinguish types of transition. However, no effective method allows to establish practical threshold indicating the condition when the critical transition is most likely to occur. Here, we introduce a powerful EWS, named dynamical eigenvalue (DEV), that is rooted in bifurcation theory of dynamical systems to estimate the dominant eigenvalue of the system. Theoretically, the absolute value of DEV approaches 1 when the system approaches bifurcation, while its position in the complex plane indicates the type of transition. We demonstrate the efficacy of the DEV approach in model systems with known bifurcation types and also test the DEV approach on various critical transitions in real-world systems.

2.
Malar J ; 21(1): 93, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303892

ABSTRACT

BACKGROUND: Adults with diabetes mellitus (DM) in malaria-endemic areas might be more susceptible to Plasmodium infection than healthy individuals. Herein, the study was aimed at verifying the hypothesis that increased fasting blood glucose (FBG) promotes parasite growth as reflected by increased parasite density. METHODS: Seven adults without DM were recruited in rural Ghana to determine the relationships between FBG and malaria parasite load. Socio-economic data were recorded in questionnaire-based interviews. Over a period of 6 weeks, FBG and Plasmodium sp. Infection were measured in peripheral blood samples photometrically and by polymerase chain reaction (PCR)-assays, respectively. Daily physical activity and weather data were documented via smartphone recording. For the complex natural systems of homeostatic glucose control and Plasmodium sp. life cycle, empirical dynamic modelling was applied. RESULTS: At baseline, four men and three women (median age, 33 years; interquartile range, 30-48) showed a median FBG of 5.5 (5.1-6.0 mmol/L); one participant had an asymptomatic Plasmodium sp. infection (parasite density: 240/µL). In this participant, convergent cross mapping (CCM) for 34 consecutive days, showed that FBG was causally affected by parasite density (p < 0.02), while the reciprocal relationship was not discernible (p > 0.05). Additionally, daily ambient temperature affected parasite density (p < 0.01). CONCLUSION: In this study population living in a malaria-endemic area, time series analyses were successfully piloted for the relationships between FBG and Plasmodium sp. density. Longer observation periods and larger samples are required to confirm these findings and determine the direction of causality.


Subject(s)
Blood Glucose , Malaria , Adult , Fasting , Female , Ghana/epidemiology , Humans , Male , Parasite Load
3.
Sci Rep ; 8(1): 16768, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425277

ABSTRACT

To control mosquito populations for managing vector-borne diseases, a critical need is to identify and predict their response to causal environmental variables. However, most existing attempts rely on linear approaches based on correlation, which cannot apply in complex, nonlinear natural systems, because correlation is neither a necessary nor sufficient condition for causation. Applying empirical dynamic modelling that acknowledges nonlinear dynamics on nine subpopulations of tiger mosquitos from three neighbouring reef islets of the Raiatea atoll, we identified temperature, precipitation, dew point, air pressure, and mean tide level as causal environmental variables. Interestingly, responses of subpopulations in close proximity (100-500 m) differed with respect to their causal environmental variables and the time delay of effect, highlighting complexity in mosquito-environment causality network. Moreover, we demonstrated how to explore the effects of changing environmental variables on number and strength of mosquito outbreaks, providing a new framework for pest control and disease vector ecology.


Subject(s)
Aedes , Environment , Models, Statistical , Animals , Population Dynamics , Time Factors
4.
J Theor Biol ; 428: 98-105, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28579427

ABSTRACT

Recent efforts in controlling mosquito-borne diseases focus on biocontrol strategies that incapacitate pathogens inside mosquitoes by altering the mosquito's microbiome. A case in point is the introduction of Wolbachia into natural mosquito populations in order to eliminate Dengue virus. However, whether this strategy can successfully control vector-borne diseases is debated; particularly, how artificial infection affects population dynamics of hosts remains unclear. Here, we show that natural Wolbachia infections are associated with unstable mosquito population dynamics by contrasting Wolbachia-infected versus uninfected cage populations of the Asian tiger mosquito (Aedes albopictus). By analyzing weekly data of adult mosquito abundances, we found that the variability of the infected populations is significantly higher than that of the uninfected. The elevated population variability is explained by increased instability in dynamics, as quantified by system nonlinearity (i.e., state-dependence). In addition, predictability of infected populations is substantially lower. A mathematical model analysis suggests that Wolbachia may alter mosquito population dynamics by modifying larval competition of hosts. These results encourage examination for effects of artificial Wolbachia establishment on mosquito populations, because an enhancement of population variability with reduced predictability could pose challenges in management. Our findings have implications for application of microbiome alterations in biocontrol programs.


Subject(s)
Culicidae/microbiology , Gram-Negative Bacterial Infections/microbiology , Wolbachia/growth & development , Aedes/microbiology , Animals , Models, Biological , Nonlinear Dynamics , Population Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL