Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441729

ABSTRACT

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Kluyveromyces , Gene Expression Regulation , Kluyveromyces/genetics , Esters
2.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474649

ABSTRACT

The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products. Herein, maceration and supercritical carbon dioxide (scCO2) extractions were optimized to maximize the phenolic and flavonoid contents and the antioxidant capacity of vegetal extracts of A. angustifolia Haw. In the maceration process, the optimal extraction condition was a water-ethanol mixture (63:37% v/v), which yielded a total phenolic and flavonoid content of 27.92 ± 0.90 mg EAG/g DL and 12.85 ± 0.53 µg QE/g DL, respectively, and an antioxidant capacity of 32.67 ± 0.91 (ABTS assay), 17.30 ± 0.36 (DPPH assay), and 13.92 ± 0.78 (FRAP assay) µM TE/g DL. Using supercritical extraction, the optimal conditions for polyphenol recovery were 60 °C, 320 bar, and 10% v/v. It was also observed that lower proportions of cosolvent decreased the polyphenol extraction more than pressure and temperature. In both optimized extracts, a total of 29 glycosylated flavonoid derivatives were identified using LC-ESI-QTof/MS. In addition, another eight novel compounds were identified in the supercritical extracts, showing the efficiency of the cosolvent for recovering new flavonoid derivatives.


Subject(s)
Agave , Antioxidants/chemistry , Polyphenols/chemistry , Phenols/chemistry , Flavonoids/chemistry , Plant Extracts/chemistry
3.
FEMS Yeast Res ; 22(1)2022 02 23.
Article in English | MEDLINE | ID: mdl-35084467

ABSTRACT

Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to ß-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA. Some of these genes were specifically expressed in some of the yeasts according to their fructans assimilation metabolism. Different hexose transporters that could be related to the assimilation of fructose and glucose were found in both the transcriptomes. Our findings provide a better understanding of AF assimilation in these yeasts and provide resources for further metabolic engineering and biotechnology applications.


Subject(s)
Agave , Torulaspora , Fermentation , Fructans/metabolism , Gene Expression Profiling , Hydrolysis , Saccharomycetales , Torulaspora/metabolism
4.
Math Biosci Eng ; 18(5): 5094-5113, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34517479

ABSTRACT

A stoichiometric model for Saccharomyces cerevisiae is reconstructed to analyze the continuous fermentation process of agave juice in Tequila production. The metabolic model contains 94 metabolites and 117 biochemical reactions. From the above set of reactions, 93 of them are linked to internal biochemical reactions and 24 are related to transport fluxes between the medium and the cell. The central metabolism of S. cerevisiae includes the synthesis for 20 amino-acids, carbohydrates, lipids, DNA and RNA. Using flux balance analysis (FBA), different physiological states of S. cerevisiae are shown during the fermentative process; these states are compared with experimental data under different dilution rates (0.04-0.12 h$ ^{-1} $). Moreover, the model performs anabolic and catabolic biochemical reactions for the production of higher alcohols. The importance of the Saccharomyces cerevisiae genomic model in the area of alcoholic beverage fermentation is due to the fact that it allows to estimate the metabolic fluxes during the beverage fermentation process and a physiology state of the microorganism.


Subject(s)
Agave , Saccharomyces cerevisiae , Alcoholic Beverages/analysis , Ethanol , Fermentation
5.
Compr Rev Food Sci Food Saf ; 20(4): 3464-3503, 2021 07.
Article in English | MEDLINE | ID: mdl-34096187

ABSTRACT

There is a recent and growing interest in the study and application of non-Saccharomyces yeasts, mainly in fermented foods. Numerous publications and patents show the importance of these yeasts. However, a fundamental issue in studying and applying them is to ensure an appropriate preservation scheme that allows to the non-Saccharomyces yeasts conserve their characteristics and fermentative capabilities by long periods of time. The main objective of this review is to present and analyze the techniques available to preserve these yeasts (by conventional and non-conventional methods), in small or large quantities for laboratory or industrial applications, respectively. Wine fermentation is one of the few industrial applications of non-Saccharomyces yeasts, but the preservation stage has been a major obstacle to achieve a wider application of these yeasts. This review considers the preservation techniques, and clearly defines parameters such as culturability, viability, vitality and robustness. Several conservation strategies published in research articles as well as patents are analyzed, and the advantages and disadvantages of each technique used are discussed. Another important issue during conservation processes is the stress to which yeasts are subjected at the time of preservation (mainly oxidative stress). There is little published information on the subject for non-Saccharomyces yeast, but it is a fundamental point to consider when designing a preservation strategy.


Subject(s)
Wine , Fermentation , Saccharomyces cerevisiae , Wine/analysis
6.
FEMS Yeast Res ; 20(8)2021 01 06.
Article in English | MEDLINE | ID: mdl-33316048

ABSTRACT

Alcoholic fermentation is influenced by yeast strain, culture media, substrate concentration and fermentation conditions, which contribute to taste and aroma. Some non-Saccharomyces yeasts are recognized as volatile compound producers that enrich aromatic profile of alcoholic beverages. In this work, 21 strains of Pichia kluyveri isolated from different fermentative processes and regions were evaluated. A principal component analysis (PCA) showed statistical differences between strains mainly associated with the variety and concentration of the compounds produced. From the PCA, two strains (PK1 and PK8) with the best volatile compound production were selected to evaluate the impact of culture media (M12 medium and Agave tequilana juice), stirring speeds (100 and 250 rpm) and temperatures (20°C, 25°C and 30°C). Increased ester production was observed at 250 rpm. Greatest effect in alcohols and ester production was found with A. tequilana, identifying PK1 as higher alcohol producer, and PK8 as better ester producer. Regarding temperature, PK1 increased ester production with decreased fermentation temperature. PK8 presented maximum levels of ethyl acetate and ethyl dodecanoate at 20°C, and finally isoamyl acetate increased its production at 30°C. Therefore, P. kluyveri strains are of great interest to produce different aromatic profiles that are affected by factors including medium, agitation and temperature.


Subject(s)
Alcohols/analysis , Fermentation , Odorants/analysis , Pichia/metabolism , Volatile Organic Compounds/analysis , Alcoholic Beverages , Culture Media , Esters/analysis , Industrial Microbiology , Temperature
7.
Insects ; 10(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370207

ABSTRACT

Specific ecological interactions between insects and microbes have potential in the development of targeted pest monitoring or control techniques for the spotted wing drosophilid, Drosophila suzukii (Matsumura), an exotic invasive pest of soft fruit. To evaluate D. suzukii attraction to yeast species from preferred types of fruit, three yeasts were isolated from blackberry fruit and two yeasts from raspberry fruit and used to bait simple plastic bottle traps. Saccharomyces cerevisiae and Hanseniaspora uvarum were identified from blackberries, whereas a different H. uvarum strain was identified from raspberry. Yeast identification was based on sequence analysis of the D1/D2 domain of the large subunit 26S rRNA gene. Commercial baker's yeast (S. cerevisiae) was similar or more effective for the capture of D. suzukii males and females than yeasts isolated from blackberry or raspberry when grown in sucrose. However, when grown in corn syrup, a strain of S. cerevisiae from blackberry captured the highest number of females and a strain of H. uvarum isolated from raspberry captured high numbers of males and females. Species of Candida, Hanseniaspora, and Pichia from a laboratory yeast collection did not outperform baker's yeast in pairwise tests when grown in sucrose solution or yeast-peptone-dextrose medium. The raspberry strain of H. uvarum grown in corn syrup outperformed S. cerevisiae grown in sucrose, in terms of captures in baited traps under laboratory conditions. We conclude that yeast species, strain, and growth medium can have a marked influence on D. suzukii attraction to baited traps, a finding that could assist in the development of yeast-related monitoring or control techniques targeted at this pest.

8.
Eng Life Sci ; 18(9): 643-653, 2018 Sep.
Article in English | MEDLINE | ID: mdl-32624944

ABSTRACT

The application of in situ near-infrared spectroscopy monitoring of xylose metabolizing yeast such as Pichia stipitis for ethanol production with semisynthetic media, applying chemometrics, was investigated. During the process in a bioreactor, biomass, glucose, xylose, ethanol, acetic acid, and glycerol determinations were performed by a transflection probe immersed in the culture broth and connected to a near-infrared process analyzer. Wavelength windows in near-infrared spectra recorded between 800 and 2200 nm were pretreated using Savitzky-Golay smoothing, second derivative and multiplicative scattering correction in order to perform a partial least squares regression and generate the calibration models. These calibration models were tested by external validation (78 samples). Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. Moreover, regressions coefficients (ß) and variable influence in the projection plots were used to assess the results. A novelty is the use of ß versus VIP dispersion plots to determine which vectors have more influence on the response in order to improve process comprehension and operability. Validated models were used in a real-time monitoring during P. stipitis NRRL Y7124 semisynthetic media fermentations.

9.
Biotechnol Prog ; 32(2): 510-7, 2016 03.
Article in English | MEDLINE | ID: mdl-26743160

ABSTRACT

The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016.


Subject(s)
Bioreactors , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Spectroscopy, Near-Infrared , Calibration , Ethanol/analysis , Fermentation , Least-Squares Analysis , Saccharomyces cerevisiae/chemistry
11.
Genome Announc ; 3(4)2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26205871

ABSTRACT

Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome.

12.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067948

ABSTRACT

Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera.

13.
World J Microbiol Biotechnol ; 29(7): 1279-87, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23417282

ABSTRACT

During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.


Subject(s)
Food Microbiology , Kluyveromyces/drug effects , Kluyveromyces/metabolism , Oxidative Stress , Bioreactors/microbiology , Culture Media/chemistry , Hydrogen Peroxide/toxicity , Kluyveromyces/isolation & purification , Microbial Viability/drug effects , Oxidants/toxicity , Oxidation-Reduction , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Vitamin K 3/toxicity
14.
FEMS Yeast Res ; 8(7): 1037-52, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18759745

ABSTRACT

The great variety of agaves and their multiple uses have played an important role in the cultural identification of Mexico. They have been exploited in many ways for over 10,000 years, and one of these applications is the production of alcoholic nondistilled and distilled beverages. Most of the production processes of these Mexican beverages involve a complex fermentation in which bacteria (mainly lactic and acetic acid) and yeasts (non-Saccharomyces and Saccharomyces) are present in stable mixed populations, or succeeding one another, and have a significant impact on the sensorial characteristics and nutritive value of the final product. This minireview focuses on several nondistilled and distilled Agave beverages, their production area, the Agave species used in their elaboration, the functional microbiota involved in the fermentation process, their fermentation products (when known), the biochemical changes of these unique fermentations, and their impact on the quality and sensorial characteristics of the product.


Subject(s)
Agave/metabolism , Agave/microbiology , Alcoholic Beverages/microbiology , Yeasts/classification , Yeasts/metabolism , Agave/classification , Fermentation , Food Microbiology , Industrial Microbiology , Mexico , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...