Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145514

ABSTRACT

Optical trapping is a potent tool for achieving precise and noninvasive manipulation of small objects in a vacuum and liquids. However, due to the substantial disparity between optical forces and interfacial adhesion, target objects should be suspended in fluid environments, rendering solid contact surfaces a restricted area for conventional optical tweezers. In this work, by relying on a single continuous wave (CW) laser, we demonstrate an optical manipulation system applicable for both fluid and solid domains, namely, amphibious hybrid laser tweezers. The key to our system lies in modulating the intensity of the CW laser with duration shorter than the dynamic thermal equilibrium time within objects, wherein strong thermal gradient forces with ∼6 orders of magnitude higher than the forces in optical tweezers are produced, enabling moving and trapping micro/nano-objects on solid interfaces. Thereby, CW laser-based optical tweezers and pulsed laser-based photothermal shock tweezers are seamlessly fused with the advantages of cost-effectiveness and simplicity. Our concept breaks the stereotype that CW lasers are limited to generating tiny forces and instead achieve ultrawide force generation spanning from femto-newtons (10-15 N) to (10-6 N). Our work expands the horizon of optical manipulation by seamlessly bridging its applications in fluid and solid environments and holds promise for inspiring optical manipulation techniques to perform more challenging tasks, which may unearth application scenarios in diverse fields such as fundamental physical research, nanofabrication, micro/nanorobotics, biomedicine, and cytology.

2.
Opt Express ; 32(6): 9847-9856, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571209

ABSTRACT

By using an external injection locking method, for what we believe to be the first time, we experimentally demonstrate continuous ultra-wideband signal regeneration in random optoelectronic oscillators, achieving more adaptable signal processing capabilities than self-oscillation methods. Supported by theoretical analysis and experimental evidences, this system can regenerate any signal with sufficient gain in a random-feedback cavity, independent of cavity filters. Remarkably, enhanced phase noise performance with over 35.2 dB side mode suppression and a phase noise better than -86 dBc@1 kHz at higher injecting powers are demonstrated. Additionally, we successfully process complex multi-frequency communication signals, indicating potential applications in radar, remote sensing, and data communications.

SELECTION OF CITATIONS
SEARCH DETAIL