Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Proteomics ; 289: 105010, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37797878

ABSTRACT

Drought is an important abiotic stress that constrains the quality and quantity of tea plants. The green leaf volatiles Z-3-hexenyl acetate (Z-3-HAC) have been reported to play an essential role in stress responses. However, the underlying mechanisms of drought tolerance in tea plants remain elusive. This study investigated the physiological, proteomic, and phosphoproteomic profiling of two tea plant varieties of Longjingchangye (LJCY) and Zhongcha 108 (ZC108) with contrasting drought tolerance characteristics under drought stress. Physiological data showed that spraying Z-3-HAC exhibited higher activities of superoxide dismutase (SOD) and catalase (CAT) in both LJCY and ZC108 but lower content of malondialdehyde (MDA) in LJCY under drought stress. The proteomic and phosphoproteomic analysis suggested that the drought tolerance mechanism of Z-3-HAC in LJCY and ZC108 was different. Proteomic analyses revealed that Z-3-HAC enhanced the drought tolerance of LJCY by fructose metabolism while enhancing the drought tolerance of ZC108 by promoting glucan biosynthesis and galactose metabolism. Furthermore, the differential abundance phosphoproteins (DAPPs) related to intracellular protein transmembrane transport and protein transmembrane transport were enriched in LJCY, and the regulation of response to osmotic stress and regulation of mRNA processing were enriched in ZC108. In addition, protein-phosphoprotein interactions (PPI) analyses suggested that energy metabolism and starch and sucrose metabolic processes might play critical roles in LJCY and ZC108, respectively. These results will help to understand the mechanisms by which Z-3-HAC enhances the drought resistance of tea plants at the protein level. SIGNIFICANT: Green leaf volatiles (GLVs) are important volatile organic compounds that play essential roles in plant defense against biotic and abiotic stresses. To understand the mechanisms of Z-3-HAC in improving the drought tolerance of tea plants, two contrasting drought tolerance varieties (LJCY and ZC108) were comparatively evaluated by proteomics and phosphoproteomics. This analysis evidenced changes in the abundance of proteins involved in energy metabolism and starch and sucrose metabolic processes in LJCY and ZC108, respectively. These proteins may elucidate new molecular aspects of the drought resistance mechanism of Z-3-HAC, providing a theoretical basis for drought resistance breeding of tea plants.


Subject(s)
Droughts , Proteomics , Proteomics/methods , Plant Breeding , Stress, Physiological , Plant Proteins/metabolism , Starch/metabolism , Sucrose , Tea , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 23(1): 129, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882726

ABSTRACT

BACKGROUND: Laccase (LAC) is the pivotal enzyme responsible for the polymerization of monolignols and stress responses in plants. However, the roles of LAC genes in plant development and tolerance to diverse stresses are still largely unknown, especially in tea plant (Camellia sinensis), one of the most economically important crops worldwide. RESULTS: In total, 51 CsLAC genes were identified, they were unevenly distributed on different chromosomes and classified into six groups based on phylogenetic analysis. The CsLAC gene family had diverse intron-exon patterns and a highly conserved motif distribution. Cis-acting elements in the promoter demonstrated that promoter regions of CsLACs encode various elements associated with light, phytohormones, development and stresses. Collinearity analysis identified some orthologous gene pairs in C. sinensis and many paralogous gene pairs among C. sinensis, Arabidopsis and Populus. Tissue-specific expression profiles revealed that the majority of CsLACs had high expression in roots and stems and some members had specific expression patterns in other tissues, and the expression patterns of six genes by qRT‒PCR were highly consistent with the transcriptome data. Most CsLACs showed significant variation in their expression level under abiotic (cold and drought) and biotic (insect and fungus) stresses via transcriptome data. Among them, CsLAC3 was localized in the plasma membrane and its expression level increased significantly at 13 d under gray blight treatment. We found that 12 CsLACs were predicted to be targets of cs-miR397a, and most CsLACs showed opposite expression patterns compared to cs-miR397a under gray blight infection. Additionally, 18 highly polymorphic SSR markers were developed, these markers can be widely used for diverse genetic studies of tea plants. CONCLUSIONS: This study provides a comprehensive understanding of the classification, evolution, structure, tissue-specific profiles, and (a)biotic stress responses of CsLAC genes. It also provides valuable genetic resources for functional characterization towards enhancing tea plant tolerance to multiple (a)biotic stresses.


Subject(s)
Arabidopsis , Camellia sinensis , Camellia sinensis/genetics , Laccase/genetics , Phylogeny , Tea
3.
Front Plant Sci ; 13: 1048442, 2022.
Article in English | MEDLINE | ID: mdl-36531409

ABSTRACT

Drought tolerance and quality stability are important indicators to evaluate the stress tolerance of tea germplasm resources. The traditional screening method of drought resistant germplasm is mainly to evaluate by detecting physiological and biochemical indicators of tea plants under drought stresses. However, the methods are not only time consuming but also destructive. In this study, hyperspectral images of tea drought phenotypes were obtained and modeled with related physiological indicators. The results showed that: (1) the information contents of malondialdehyde, soluble sugar and total polyphenol were 0.21, 0.209 and 0.227 respectively, and the drought tolerance coefficient (DTC) index of each tea variety was between 0.069 and 0.81; (2) the comprehensive drought tolerance of different varieties were (from strong to weak): QN36, SCZ, ZC108, JX, JGY, XY10, QN1, MS9, QN38, and QN21; (3) by using SVM, RF and PLSR to model DTC (drought tolerance coefficient) data, the best prediction model was selected as MSC-2D-UVE-SVM (R2 = 0.77, RMSE = 0.073, MAPE = 0.16) for drought tolerance of tea germplasm resources, named Tea-DTC model. Therefore, the Tea-DTC model based on hyperspectral machine-learning technology can be used as a new screening method for evaluating tea germplasm resources with drought tolerance.

4.
Sci Rep ; 10(1): 15504, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968186

ABSTRACT

Drought stress triggers a series of physiological and biochemical changes in tea plants. It is well known that flavonoids, lignin and long-chain fatty acids play important roles in drought resistance. However, changes in proteins related to these three metabolic pathways in tea plants under drought stress have not been reported. We analysed the proteomic profiles of tea plants by tandem mass tag and liquid chromatography-tandem mass spectrometry. A total of 4789 proteins were identified, of which 11 and 100 showed up- and downregulation, respectively. The proteins related to the biosynthesis of lignin, flavonoids and long-chain fatty acids, including phenylalanine ammonia lyase, cinnamoyl-CoA reductase, peroxidase, chalcone synthase, flavanone 3-hydroxylase, flavonol synthase, acetyl-CoA carboxylase 1,3-ketoacyl-CoA synthase 6 and 3-ketoacyl-CoA reductase 1, were downregulated. However, the contents of soluble proteins, malondialdehyde, total phenols, lignin and flavonoids in the tea plants increased. These results showed that tea plants might improve drought resistance by inhibiting the accumulation of synthases related to lignin, flavonoids and long-chain fatty acids. The proteomic spectrum of tea plants provides a scientific basis for studying the pathways related to lignin, flavonoid and long-chain fatty acid metabolism in response to drought stress.


Subject(s)
Camellia sinensis/metabolism , Fatty Acids/metabolism , Flavonoids/metabolism , Lignin/metabolism , Camellia sinensis/enzymology , Camellia sinensis/physiology , Chromatography, High Pressure Liquid , Dehydration , Fatty Acids/physiology , Flavonoids/physiology , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Lignin/physiology , Plant Proteins/metabolism , Protein Interaction Maps , Proteomics
5.
BMC Microbiol ; 20(1): 103, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32349665

ABSTRACT

BACKGROUND: Different mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions. However, the information about soil microbial diversity, community structure and ecosystem function in tea plantation under different mulching patterns was limited. In this study, we investigated bacterial and fungal communities of tea plantation soils under polyethylene film and peanut hull mulching using high-throughput 16S rRNA and ITS rDNA gene Illumina sequencing. RESULTS: The results showed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the dominant fungal phyla were Ascomycota, Mortierellomycota and Basidiomycota in all samples, but different mulching patterns affected the distribution of microbial communities. At the phylum level, the relative abundance of Nitrospirae in peanut hull mulching soils (3.24%) was significantly higher than that in polyethylene film mulching soils (1.21%) in bacterial communities, and the relative abundances of Mortierellomycota and Basidiomycota in peanut hull mulching soils (33.72, 21.93%) was significantly higher than that in polyethylene film mulching soils (14.88, 6.53%) in fungal communities. Peanut hull mulching increased the diversity of fungal communities in 0-20 cm soils and the diversity of bacterial communities in 20-40 cm soils. At the microbial functional level, there was an enrichment of bacterial functional features, including amino acid transport and metabolism and energy production and conversion, and there was an enrichment of fungal functional features, including undefined saprotrophs, plant pathogens and soils aprotrophs. CONCLUSIONS: Unique distributions of bacterial and fungal communities were observed in soils under organic mulching. Thus, we believe that the organic mulching has a positive regulatory effect on the soil bacterial and fungal communities and ecosystem functions, and so, is more suitable for tea plantation.


Subject(s)
Bacteria/classification , DNA, Ribosomal Spacer/genetics , Fungi/classification , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Tea/growth & development , Bacteria/genetics , Bacteria/isolation & purification , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , DNA, Bacterial/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Fungi/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Microbial Consortia , Mycobiome , Phylogeny , Sequence Analysis, DNA , Soil Microbiology , Tea/chemistry , Tea/microbiology
6.
Sci Rep ; 9(1): 4286, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862833

ABSTRACT

Drought stress often affects the expression of genes and proteins in tea plants. However, the global profiling of ubiquitinated (Kub) proteins in tea plants remains unearthed. Here, we performed the ubiquitome in tea leaves under drought stress using antibody-based affinity enrichment coupled with LC-MS/MS analysis. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins down-regulated under drought stress. The identified Kub proteins were mainly located in the cytosol (31%), chloroplast (27%) and nuclear (19%). Moreover, 5 conserved motifs in EKub, EXXXKub, KubD, KubE and KubA were extracted. Several Kub sites in ubiquitin-mediated proteolysis-related proteins, including RGLG2, UBC36, UEV1D, RPN10 and PSMC2, might affect protein degradation and DNA repair. Plenty of Kub proteins related to catechins biosynthesis, including PAL, CHS, CHI and F3H, were positively correlated with each other due to their co-expression and co-localization. Furthermore, some Kub proteins involved in carbohydrate and amino acid metabolism, including FBPase, FBA and GAD1, might promote sucrose, fructose and GABA accumulation in tea leaves under drought stress. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants.


Subject(s)
Camellia sinensis/chemistry , Droughts , Plant Leaves/chemistry , Plant Proteins/metabolism , Ubiquitinated Proteins/metabolism , Chromatography, Liquid , Gene Expression Regulation, Plant , Plant Proteins/genetics , Tandem Mass Spectrometry , Ubiquitinated Proteins/genetics
7.
Bioresour Technol ; 258: 345-353, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29550171

ABSTRACT

Malic acid (2-hydroxybutanedioic acid) is a four-carbon dicarboxylic acid, which has attracted great interest due to its wide usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Several mature routes for malic acid production have been developed, such as chemical synthesis, enzymatic conversion and biological fermentation. With depletion of fossil fuels and concerns regarding environmental issues, biological production of malic acid has attracted more attention, which mainly consists of three pathways, namely non-oxidative pathway, oxidative pathway and glyoxylate cycle. In recent decades, metabolic engineering of model strains, and process optimization for malic acid production have been rapidly developed. Hence, this review comprehensively introduces an overview of malic acid producers and highlight some of the successful metabolic engineering approaches.


Subject(s)
Malates , Metabolic Engineering , Dicarboxylic Acids , Fermentation
8.
Bioresour Technol ; 245(Pt B): 1407-1412, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28554521

ABSTRACT

The aim of this study was to metabolically construct Saccharomyces cerevisiae for achievement of direct methanol utilization and value added product (mainly pyruvate) production. After successful integration of methanol oxidation pathway originated from Pichia pastoris into the chromosome of S. cerevisiae, the recombinant showed 1.04g/L consumption of methanol and 3.13% increase of cell growth (OD600) when using methanol as the sole carbon source. Moreover, 0.26g/L of pyruvate was detected in the fermentation broth. The supplementation of 1g/L yeast extract could further improve cell growth with increase of 11.70% and methanol consumption to 2.35g/L. This represents the first genetically modified non-methylotrophic eukaryotic microbe for direct methanol utilization and would be of great value concerning the development of biotechnological processes.


Subject(s)
Methanol , Saccharomyces cerevisiae , Biotechnology , Fermentation , Pichia , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL