Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 26(6): 102-113, 2021 05 30.
Article in English | MEDLINE | ID: mdl-34162039

ABSTRACT

Notwithstanding previous studies have proved the anti-apoptotic effect of Bcl-2 associated athanogene3 (BAG3) in myocardium, the structural domains PXXP and BAG responsible for its protection are not reformed. Since BAG3 in cardiomyocytes is a new target for inhibiting apoptosis induced by hypoxia/reoxygenation (H/R) stress, we demonstrated that over-expression of BAG3 reduced the injury induced by H/R in either neonatal or adult rat cardiomyocytes (NRCMs and ARCMs, respectively) and PXXP and BAG domains play an important role in cellular protection in H/R stress. Apoptosis in cardiomyocytes induced by hypoxia-reperfusion was evaluated with propidium iodide (PI) staining, cleaved caspase-3, and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining in cultured NRCMS. Either increasing expression of BAG3 or its mutants was performed to manipulate the level of BAG3. Co-immunoprecipitation (Co-IP) was used to demonstrate the complex that BAG3 is binding to HSC70 and JNK. PXXP and BAG domains of BAG3 played an essential role in BAG3 attenuating cardiomyocytes apoptosis induced by H/R through the JNK signalling pathway. The cellular protection of BAG3 with its structural domain PXXP or BAG is associated with the binding with HSC70 and JNK. These results showed that the protective effect of BAG3 on apoptosis induced by H/R stress is closely related to its structural domains PXXP and BAG. The mechanism may provide a new therapeutic strategy for the patients suffering from ischemic cardiomyopathy and may be a critical role of its PXXP and BAG3 domains.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , MAP Kinase Kinase 4/metabolism , Myocytes, Cardiac/metabolism , Protein Domains , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Protein Conformation , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL