Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 877
Filter
1.
J Pharm Biomed Anal ; 248: 116274, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852298

ABSTRACT

There is an increasing scientific interest in the detection of genotoxic impurities (GTIs), with nitrobenzene compounds being considered potential genotoxic impurities due to their structural alerts, which demonstrates a threat to drug safety for patient. While current reports on the detection of nifedipine impurity primarily focus on general impurities in nifedipine. In this study, an effective and simple gas chromatography-mass spectrometry (GC-MS) method was established and verified for the separation and quantification of 2-nitrotoluene, 2-nitrobenzyl alcohol, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde, and 2-nitrobenzyl bromide in nifedipine, which have not been previously reported. The validation of this GC-MS method was conducted following the International Conference of Harmonization (ICH) guidelines, exhibiting good linearity within the range of 2-40 µg/g and accuracy between 84.6 % and 107.8 %, the RSD% of intra-day and inter-day precision was in the range of 1.77-4.55 %, stability and robustness also met acceptance criteria. This method filled the gap in detection method for nitrobenzene compounds in nifedipine, offering a novel method and technical support for nifedipine quality control.

2.
Acta Pharmacol Sin ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844788

ABSTRACT

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 µM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.

3.
World J Clin Cases ; 12(17): 3214-3220, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898870

ABSTRACT

BACKGROUND: We report a rare case of cervical spinal canal penetrating trauma and review the relevant literatures. CASE SUMMARY: A 58-year-old male patient was admitted to the emergency department with a steel bar penetrating the neck, without signs of neurological deficit. Computed tomography (CT) demonstrated that the steel bar had penetrated the cervical spinal canal at the C6-7 level, causing C6 and C7 vertebral body fracture, C6 left lamina fracture, left facet joint fracture, and penetration of the cervical spinal cord. The steel bar was successfully removed through an open surgical procedure by a multidisciplinary team. During the surgery, we found that the cervical vertebra, cervical spinal canal and cervical spinal cord were all severely injured. Postoperative CT demonstrated severe penetration of the cervical spinal canal but the patient returned to a fully functional level without any neurological deficits. CONCLUSION: Even with a serious cervical spinal canal penetrating trauma, the patient could resume normal work and life after appropriate treatment.

4.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644883

ABSTRACT

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

5.
Article in English | MEDLINE | ID: mdl-38644354

ABSTRACT

BACKGROUND: There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS: We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS: MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS: Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

6.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627764

ABSTRACT

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Subject(s)
Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Sepsis , Animals , Male , Mice , Cognitive Dysfunction/metabolism , Dynamins/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Sepsis/pathology , Sepsis-Associated Encephalopathy/metabolism , Signal Transduction
7.
Sci Rep ; 14(1): 9514, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664514

ABSTRACT

Recent research on the water content of large igneous provinces (LIPs) has revealed that water has a significant impact on the formation of LIPs. However, most studies focus on the water content of mafic-ultramafic rocks, while relatively little attention has been paid to the water content of continental flood basalts (CFB), which form the major part of LIPs and are characterized by huge volumes (> 1 × 105 km3) and short eruption times. Here, we determined water contents of clinopyroxene crystals from the Akesu diabase, which is co-genetic with flood basalts of the Tarim LIP in China. Based on these measurements, we obtained a water content of higher than 1.23 ± 0.49 wt.% for the parental magma to the Tarim CFB and a minimum water content of 1230 ± 490 ppm for the mantle source, thus indicating the presence of a hydrous mantle plume. Combined with previous studies, our results suggest that water plays a key role in the formation of the Tarim LIP. Additionally, the whole-rock compositions of the Akesu diabase indicate a contribution of pyroxenite in the mantle source. This is consistent with a model, in which water was brought into the Tarim mantle plume by a subducted oceanic plate that entered the deep mantle.

8.
Medicine (Baltimore) ; 103(15): e37778, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608115

ABSTRACT

The impact of pulmonary rehabilitation (PR) on patients with different chronic respiratory diseases (CRDs) during hospitalization has not been thoroughly evaluated before. The objectives of the current research were to assess the effect of comprehensive PR management on inpatients' self-management skills, exercise capacity, nutrition assessment and mental health issues and explore whether impacts of PR vary in different CRDs. This retrospective study analyzed the clinical data from 272 inpatients with CRDs receiving PR management during hospitalization between October 2020 and March 2022 in Beijing Chao-Yang Hospital. Significant improvements were found in the patients' ability of daily living (ADL), dyspnea (assessed by modified medical research council dyspnea scale (MMRC)), handgrip strength, maximal inspiratory and expiratory pressure, anxiety (using the 7-item generalized anxiety disorder scale (GAD-7)) and depression (the 9-item patient health questionnaire score (PHQ-9)). There was no significant change in nutrition assessment pre-post PR management during hospitalization. The subgroup analyses were conducted on hospitalized patients with chronic obstructive pulmonary disease (COPD), bronchiectasis, asthma, interstitial lung diseases (ILDs) and other CRDs (e.g., lung cancer, diaphragm hemiparesis, obesity, etc.). The results showed that ADL, MMRC score, MIP, MEP, PHQ-9 score improved in all subgroups with CRDs. Handgrip strength of left hand was increased in COPD inpatients and anxiety was improved in all subgroups except for ILDs. Comprehensive PR management was necessary and beneficial for patients with different CRDs during hospitalization.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Respiration Disorders , Humans , Hand Strength , Retrospective Studies , Hospitalization , Dyspnea
9.
Angew Chem Int Ed Engl ; 63(26): e202404734, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38635373

ABSTRACT

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

10.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448429

ABSTRACT

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

11.
Mol Neurobiol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453793

ABSTRACT

Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.

12.
Phys Chem Chem Phys ; 26(14): 11094-11104, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38530648

ABSTRACT

Aqueous ion batteries have great commercial potential in green power and energy storage due to their green nature, safety and high ionic conductivities. Different from organic electrolytes, alkali ions (Li+, Na+, and K+) inevitably bring water molecules into the electrodes during the charging/discharging process due to the hydration of ions with water molecules. The selectivity of alkali ions and the mechanism of how water molecules are involved in the ion extraction/insertion process in the electrodes have not been clarified. In this study, we focus on the characteristics of the intra-layer distribution of different hydrated ions (Li+, Na+, and K+) and the quantitative analysis of the selectivity of hydrated cations in aqueous batteries. We found that the concentration of hydrated ions greatly affects their distribution within the 1T-MoS2 layers, and the presence of hydrogen bonding and O-O repulsive forces between water molecules causes the hydrated ions to gradually form chains from the dispersed state under the effect of hydrogen bonding and ionic bonding, then further form strips, and ultimately be densely dispersed within the whole layer. In addition, the chemical potential difference of hydrated ions is the key to the competitive reaction, and we quantitatively analyze the selectivity relationship between hydrated cations throughout the charging and discharging process; hydrated sodium ions will have better performance than lithium and potassium ions in aqueous batteries.

13.
FASEB J ; 38(5): e23529, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38441524

ABSTRACT

γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.


Subject(s)
Head and Neck Neoplasms , Radiomics , Humans , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Algorithms , Calibration , Head and Neck Neoplasms/diagnostic imaging
14.
BMC Anesthesiol ; 24(1): 92, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443828

ABSTRACT

OBJECTIVE: To study how Pneumoperitoneum under Trendelenburg position for robot-assisted laparoscopic surgery impact the perioperative respiratory parameters, diagrammatic function, etc. METHODS: Patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position and patients undergoing general surgery in the supine position were selected. The subjects were divided into two groups according to the type of surgery: robot-assisted surgery group and general surgery group. ① Respiratory parameters such as lung compliance, oxygenation index, and airway pressure were recorded at 5 min after intubation, 1 and 2 h after pneumoperitoneum. ② Diaphragm excursion (DE) and diaphragm thickening fraction (DTF) were recorded before entering the operating room (T1), immediately after extubation (T2), 10 min after extubation (T3), and upon leaving the postanesthesia care unit (T4). ③ Peripheral venous blood (5 ml) was collected before surgery and 30 min after extubation and was analyzed by enzyme-linked immunosorbent assay to determine the serum concentration of Clara cell secretory protein 16 (CC16) and surfactant protein D (SP-D). RESULT: ① Compared with the general surgery group (N = 42), the robot-assisted surgery group (N = 46) presented a significantly higher airway pressure and lower lung compliance during the surgery(P < 0.001). ② In the robot-assisted surgery group, the DE significantly decreased after surgery (P < 0.001), which persisted until patients were discharged from the PACU (P < 0.001), whereas the DTF only showed a transient decrease postoperatively (P < 0.001) and returned to its preoperative levels at discharge (P = 0.115). In the general surgery group, the DE showed a transient decrease after surgery(P = 0.011) which recovered to the preoperative levels at discharge (P = 1). No significant difference in the DTF was observed among T1, T2, T3, and T4. ③ Both the general and robot-assisted surgery reduced the postoperative serum levels of SP-D (P < 0.05), while the robot-assisted surgery increased the postoperative levels of CC16 (P < 0.001). CONCLUSION: Robot-assisted laparoscopic surgery significantly impairs postoperative diaphragm function, which does not recover to preoperative levels at PACU discharge. Elevated levels of serum CC16 after surgery suggest potential lung injury. The adverse effects may be attributed to the prolonged Trendelenburg position and pneumoperitoneum during laparoscopic surgery.


Subject(s)
Laparoscopy , Pneumoperitoneum , Robotic Surgical Procedures , Robotics , Humans , Diaphragm , Head-Down Tilt , Pulmonary Surfactant-Associated Protein D , Respiration
15.
BMC Med ; 22(1): 96, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443977

ABSTRACT

BACKGROUND: There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS: To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS: Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS: Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.


Subject(s)
Aminopyridines , Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Drug Repositioning , Mendelian Randomization Analysis , Protein Serine-Threonine Kinases/genetics
16.
Cell Commun Signal ; 22(1): 177, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38475811

ABSTRACT

BACKGROUND: The incidence of multiple myeloma (MM), a type of blood cancer affecting monoclonal plasma cells, is rising. Although new drugs and therapies have improved patient outcomes, MM remains incurable. Recent studies have highlighted the crucial role of the chemokine network in MM's pathological mechanism. Gaining a better understanding of this network and creating an overview of chemokines in MM could aid in identifying potential biomarkers and developing new therapeutic strategies and targets. PURPOSE: To summarize the complicated role of chemokines in MM, discuss their potential as biomarkers, and introduce several treatments based on chemokines. METHODS: Pubmed, Web of Science, ICTRP, and Clinical Trials were searched for articles and research related to chemokines. Publications published within the last 5 years are selected. RESULTS: Malignant cells can utilize chemokines, including CCL2, CCL3, CCL5, CXCL7, CXCL8, CXCL12, and CXCL13 to evade apoptosis triggered by immune cells or medication, escape from bone marrow and escalate bone lesions. Other chemokines, including CXCL4, CCL19, and CXCL10, may aid in recruiting immune cells, increasing their cytotoxicity against cancer cells, and inducing apoptosis of malignant cells. CONCLUSION: Utilizing anti-tumor chemokines or blocking pro-tumor chemokines may provide new therapeutic strategies for managing MM. Inspired by developed CXCR4 antagonists, including plerixafor, ulocuplumab, and motixafortide, more small molecular antagonists or antibodies for pro-tumor chemokine ligands and their receptors can be developed and used in clinical practice. Along with inhibiting pro-tumor chemokines, studies suggest combining chemokines with chimeric antigen receptor (CAR)-T therapy is promising and efficient.


Subject(s)
Heterocyclic Compounds , Multiple Myeloma , Humans , Hematopoietic Stem Cell Mobilization , Chemokines , Signal Transduction , Biomarkers
17.
Mol Neurobiol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324182

ABSTRACT

Observational studies have faced challenges in identifying replicable causes for amyotrophic lateral sclerosis (ALS). To address this, we employed an unbiased and data-driven approach to discover and explore potential causal exposures using two-sample Mendelian randomization (MR) analyses. In the phenotype discovery stage, we assessed 3948 environmental exposures from the UK Biobank and utilized ALS summary statistics (Europeans, 20,806 cases, 59,804 controls) as the outcome within a phenome-wide MR pipeline. Through a range of sensitivity analyses, two medication traits were identified to be protective for ALS. In the target exploration stage, we further conducted drug target MR analyses using the latest and trans-ethnic summary data on lipid-related traits and ALS (Europeans, 27,205 cases, 110,881 controls; East Asians, 1234 cases, 2850 controls). Our aim was to explore potential causal drug targets through six lipid-modifying effects. These comprehensive analyses revealed significant findings. Specifically, "cholesterol-lowering medication" and "atorvastatin" survived predefined criteria in the phenotype discovery stage and exhibited a protective effect on ALS. Further in the target exploration stage, we demonstrated that the therapeutic effect of APOB through LDL-lowering was associated with reduced ALS liability in Europeans (OR = 0.835, P = 5.61E - 5). Additionally, the therapeutic effect of APOA1 and LDLR through TC-lowering was associated with reduced ALS liability in East Asians (APOA1, OR = 0.859, P = 5.38E - 4; LDLR, OR = 0.910, P = 2.73E - 5). Overall, we propose potential protective effects of cholesterol-lowering drugs or statins on ALS risk from thousands of exposures. Our research also suggests APOB, APOA1, and LDLR as novel therapeutic targets for ALS and supports their potential protective mechanisms may be mediated by LDL-lowering or TC-lowering effects.

18.
IEEE Rev Biomed Eng ; 17: 42-62, 2024.
Article in English | MEDLINE | ID: mdl-37471188

ABSTRACT

The integration of machine/deep learning and sensing technologies is transforming healthcare and medical practice. However, inherent limitations in healthcare data, namely scarcity, quality, and heterogeneity, hinder the effectiveness of supervised learning techniques which are mainly based on pure statistical fitting between data and labels. In this article, we first identify the challenges present in machine learning for pervasive healthcare and we then review the current trends beyond fully supervised learning that are developed to address these three issues. Rooted in the inherent drawbacks of empirical risk minimization that underpins pure fully supervised learning, this survey summarizes seven key lines of learning strategies, to promote the generalization performance for real-world deployment. In addition, we point out several directions that are emerging and promising in this area, to develop data-efficient, scalable, and trustworthy computational models, and to leverage multi-modality and multi-source sensing informatics, for pervasive healthcare.


Subject(s)
Machine Learning , Technology , Humans , Supervised Machine Learning
19.
Am J Epidemiol ; 193(1): 170-179, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37552965

ABSTRACT

We evaluated the validity and reproducibility of a semiquantitative food frequency questionnaire (FFQ) for measuring intakes of 149 foods and 25 food groups among 736 participants of the Women's Lifestyle Validation Study (WLVS, 2010-2012) and 649 participants of the Men's Lifestyle Validation Study (MLVS, 2011-2013). Validity of the FFQ compared with two 7-day dietary records measured 6 months apart and the reproducibility between 2 FFQs administered 1 year apart (FFQ1 and FFQ2) were assessed using Spearman correlations and intraclass correlation coefficients. The average 1-year reproducibility of FFQ-measured foods was 0.64 in both the WLVS and MLVS. Reproducibility of the food groups (mean = 0.71 among women and 0.72 among men) was generally higher than that for individual foods. Among women, the average validity correlation for individual foods was 0.59 when comparing FFQ2 with the 7-day dietary records. Among men, the corresponding average validity correlation was 0.61. Compared with individual foods, food groups had slightly higher validity correlations in both women (range, 0.45-0.92; mean = 0.61) and men (range, 0.46-0.88; mean = 0.65). This study reaffirms that the FFQ performs well in measuring most foods and food groups and provides data to adjust for measurement errors in epidemiologic studies of foods and food groups.


Subject(s)
Food , Life Style , Male , Humans , Female , Reproducibility of Results , Surveys and Questionnaires , Diet Records , Diet , Diet Surveys
20.
IEEE Trans Cybern ; 54(2): 679-692, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37028043

ABSTRACT

Camera-based passive dietary intake monitoring is able to continuously capture the eating episodes of a subject, recording rich visual information, such as the type and volume of food being consumed, as well as the eating behaviors of the subject. However, there currently is no method that is able to incorporate these visual clues and provide a comprehensive context of dietary intake from passive recording (e.g., is the subject sharing food with others, what food the subject is eating, and how much food is left in the bowl). On the other hand, privacy is a major concern while egocentric wearable cameras are used for capturing. In this article, we propose a privacy-preserved secure solution (i.e., egocentric image captioning) for dietary assessment with passive monitoring, which unifies food recognition, volume estimation, and scene understanding. By converting images into rich text descriptions, nutritionists can assess individual dietary intake based on the captions instead of the original images, reducing the risk of privacy leakage from images. To this end, an egocentric dietary image captioning dataset has been built, which consists of in-the-wild images captured by head-worn and chest-worn cameras in field studies in Ghana. A novel transformer-based architecture is designed to caption egocentric dietary images. Comprehensive experiments have been conducted to evaluate the effectiveness and to justify the design of the proposed architecture for egocentric dietary image captioning. To the best of our knowledge, this is the first work that applies image captioning for dietary intake assessment in real-life settings.


Subject(s)
Eating , Privacy , Diet , Nutrition Assessment , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...