Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(24): 246702, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949369

ABSTRACT

Materials manifesting the Kitaev model, characterized by bond-dependent interactions on a honeycomb lattice, can host exotic phenomena like quantum spin liquid states and topological magnetic excitations. However, finding such materials remains a formidable challenge. Here, we report high-resolution inelastic neutron scattering measurements performed on VI_{3}, a van der Waals ferromagnetic Mott insulator, covering a wide range of reciprocal space. Our measurements unveil highly anisotropic magnetic excitations in momentum space. Through a comprehensive comparative analysis of various models that incorporate diverse symmetry-allowed magnetic interactions, we find the observed excitations are well captured by a model with a large bond-dependent Kitaev interaction. These results not only help to understand the intriguing properties of VI_{3}, such as the pronounced anomalous thermal Hall effects and strong pressure or structure dependence of magnetism, but also open a new avenue for exploring Kitaev physics.

2.
Chin Herb Med ; 15(3): 421-429, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37538867

ABSTRACT

Objective: Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods: High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results: Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion: Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.

3.
Acta Pharmacol Sin ; 44(9): 1826-1840, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37095199

ABSTRACT

Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.


Subject(s)
Adipose Tissue, Brown , PPAR alpha , Mice , Animals , Adipose Tissue, Brown/metabolism , PPAR alpha/metabolism , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , Mitochondria/metabolism , Energy Metabolism , Adipose Tissue, White/metabolism , Thermogenesis , Mice, Inbred C57BL
4.
Sci Bull (Beijing) ; 67(1): 38-44, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36545957

ABSTRACT

We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap. In the high field regime where the quantum fluctuations are largely suppressed, we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity. Through detailed semi-classical calculations, we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.

5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232344

ABSTRACT

Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.


Subject(s)
Drugs, Chinese Herbal , Flavanones , Neoplasms , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Flavonoids/pharmacology , Glycosides , Humans , Medicine, Chinese Traditional , Neoplasms/drug therapy , Scutellaria baicalensis/chemistry
6.
Biomed Pharmacother ; 154: 113627, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058152

ABSTRACT

Constipation has become an epidemic enteric medical problem, accompanied with increasing long-term sequelae. Gut microbiota and serotonin (5-HT) have been believed as predominant player in the treatment of constipation. In clinical practices, Shouhui Tongbian Capsule (SHTB) was found to effectively improve constipation symptoms and promote gastrointestinal motility. However, the specific mechanism of SHTB is not clearly elucidated. Our current study aims to explore the therapeutic effects of SHTB against the development of constipation and the underlying mechanisms related to gut bacterial and 5-HT. We established loperamide hydrochloride (LH)-induced experimental constipation mouse model to evaluate the effect of SHTB. 16S RNA sequencing, fecal microbiota transplants (FMT), high performance liquid chromatograph, and molecular biological analysis were performed to investigate the potential mechanisms of SHTB. Our data demonstrated that SHTB significantly ameliorated LH-induced experimental constipation and accelerated enteric motility via promoting 5-HT biosynthesis in enterochromaffin cells and enteric neuron growth of the enteric nervous system (ENS) in both the small intestine and colon. Additionally, SHTB significantly modulated gut microbiota dysbiosis and potentially altered microbiota metabolites to enhance intestinal 5-HT production. Finally, FMT study confirmed that the effects of SHTB on 5-HT production and constipation are dependent on modulating intestinal microbiota dysbiosis. In conclusion, our current study deciphered therapeutic mechanism of SHTB in the treatment of experimental constipation from perspectives of gut microbiota-5-HT-intetinal motility axis and provides novel insights into the appropriate and safe application of SHTB in the clinic.


Subject(s)
Gastrointestinal Microbiome , Animals , Constipation/chemically induced , Constipation/drug therapy , Dysbiosis , Gastrointestinal Motility/physiology , Loperamide/therapeutic use , Mice , Serotonin/metabolism
7.
Phytomedicine ; 103: 154219, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691075

ABSTRACT

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a progressive chronic liver disease, yet there is still a lack of effective pharmacological therapies at present. Saikosaponin D (SSd) has been reported to exhibit hepatoprotective and anti-steatosis activities in our previous research. PURPOSE: The current study aims to further investigate the underlying mechanisms of SSd on MAFLD from the perspectives of the crosstalk between fatty acid (FA) biosynthesis and catabolism to provide strong support for further clinical management of MAFLD. METHODS: A MAFLD mouse model induced by a high-fat diet and glucose-fructose water (HFSW) was used for in vivo study. HepG2 cells, primary mouse hepatocytes and adipocytes were further employed for in vitro studies. RESULTS: SSd improved intracellular lipid accumulation both in the liver and adipose tissues in HFSW-fed mice. Mechanistically, SSd may serve as a potent PPARα agonist, and the activation of PPARα by SSd in both hepatocytes and adipocytes not only promoted FA oxidation but also concurrently induced INSIG1/2 expression, which subsequently inhibited SREBP1c maturation and ultimately FA synthesis. Moreover, the regulative effect of SSd on lipid metabolism was abolished by the PPARα inhibitor, GW6471. CONCLUSION: This study demonstrated that SSd improved lipid homeostasis by coordinately regulating PPARα activation-mediated both inhibition of SREBP1c-dependent FA biosynthesis and induction of FA degradation, and thus shed novel light on the discovery of SSd-based therapeutic strategies for MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR alpha , Saponins , Sterol Regulatory Element Binding Protein 1 , Animals , Diet, High-Fat/adverse effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipid Metabolism/drug effects , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oleanolic Acid/analogs & derivatives , PPAR alpha/agonists , PPAR alpha/metabolism , Saponins/pharmacology , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism
8.
Acta Pharmacol Sin ; 43(8): 2026-2041, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35027662

ABSTRACT

Liver fibrosis is the common consequence of almost all liver diseases and has become an urgent clinical problem without efficient therapies. Recent evidence has shown that hepatocytes-derived extracellular vesicles (EVs) play important roles in liver pathophysiology, but little is known about the role of damaged hepatocytes-derived EVs in hepatic stellate cell (HSC) activation and following fibrosis. Tetramethylpyrazine (TMP) from Ligusticum wallichii Franchat exhibits a broad spectrum of biological activities including liver protection. In this study, we investigated whether TMP exerted liver-protective action through regulating EV-dependent intercellular communication between hepatocytes and HSCs. Chronic liver injury was induced in mice by CCl4 (1.6 mg/kg, i.g.) twice a week for 8 weeks. In the last 4 weeks of CCl4 administration, mice were given TMP (40, 80, 160 mg·kg-1·d-1, i.g.). Acute liver injury was induced in mice by injection of a single dose of CCl4 (0.8 mg/kg, i.p.). After injection, mice were treated with TMP (80 mg/kg) every 24 h. We showed that TMP treatment dramatically ameliorated CCl4-induced oxidative stress and hepatic inflammation as well as acute or chronic liver fibrosis. In cultured mouse primary hepatocytes (MPHs), treatment with CCl4 or acetaminophen resulted in mitochondrial dysfunction, release of mitochondrial DNA (mtDNA) from injured hepatocytes to adjacent hepatocytes and HSCs through EVs, mediating hepatocyte damage and fibrogenic responses in activated HSCs; pretreatment of MPHs with TMP (25 µM) prevented all these pathological effects. Transplanted serum EVs from TMP-treated mice prevented both initiation and progression of liver fibrosis caused by CCl4. Taken together, this study unravels the complex mechanisms underlying the protective effects of TMP against mtDNA-containing EV-mediated hepatocyte injury and HSC activation during liver injury, and provides critical evidence inspiring the development of TMP-based innovative therapeutic agents for the treatment of liver fibrosis.


Subject(s)
Extracellular Vesicles , Liver Diseases , Animals , Carbon Tetrachloride/adverse effects , Carbon Tetrachloride/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/pharmacology , DNA, Mitochondrial/therapeutic use , Fibrosis , Hepatic Stellate Cells , Hepatocytes , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Liver Diseases/metabolism , Mice , Mitochondria/pathology , Pyrazines
9.
Acta Pharm Sin B ; 11(11): 3527-3541, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34900534

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) has become one of the most prominent causes of chronic liver diseases and malignancies. However, few therapy has been approved. Radix Bupleuri (RB) is the most frequently used herbal medicine for the treatment of liver diseases. In the current study, we aim to systemically evaluate the therapeutic effects of saikosaponin A (SSa) and saikosaponin D (SSd), the major bioactive monomers in RB, against NAFLD and to investigate the underlying mechanisms. Our results demonstrated that both SSa and SSd improved diet-induced NAFLD. Integrative lipidomic and transcriptomic analysis revealed that SSa and SSd modulated glycerolipid metabolism by regulating related genes, like Lipe and Lipg. SSd profoundly suppressed the fatty acid biosynthesis by downregulating Fasn and Acaca expression and promoted fatty acid degradation by inducing Acox1 and Cpt1a expression. Bioinformatic analysis further predicted the implication of master transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα), in the protective effects of SSa and SSd. These results were further confirmed in vitro in mouse primary hepatocytes. In summary, our study uncoded the complicated mechanisms underlying the promising anti-steatosis activities of saikosaponins (SSs), and provided critical evidence inspiring the discovery of innovative therapies based on SSa and SSd for the treatment of NAFLD and related complications.

10.
Phys Rev Lett ; 127(14): 147205, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652174

ABSTRACT

We report neutron scattering measurements of the spinel oxide LiGaCr_{4}O_{8}, in which magnetic ions Cr^{3+} form a breathing pyrochlore lattice. Our experiments reveal the coexistence of a nearly dispersionless resonance mode and dispersive spin-wave excitations in the magnetically ordered state, which can be quantitatively described by a quantum spin model of hexagonal loops and linear spin-wave theory with the same set of exchange parameters, respectively. Comparison to other Cr spinel oxides reveals a linear relationship between the resonance energy and lattice constant across all these materials, which is in agreement with our hexagonal loop calculations. Our results suggest a unified picture for spin resonances in Cr spinel oxides.

11.
Front Pharmacol ; 12: 754976, 2021.
Article in English | MEDLINE | ID: mdl-34566665

ABSTRACT

Chronic inflammation in response to persistent exogenous stimuli or damage results in liver fibrosis, which subsequently progresses into malignant liver diseases with high morbidity and mortality. Ferulic acid (FA) is a phenolic acid widely isolated from abundant plants and exhibits multiple biological activities including anti-oxidant, anti-inflammation and enhancement of immune responses. Adenosine monophosphate-activated protein kinase (AMPK) functions as a critical energy sensor and is regulated through the phosphorylation of liver kinases like LKB1 or dephosphorylation by protein tyrosine phosphatases (PTPs). However, the role of FA in carbon tetrachloride (CCl4)-induced chronic inflammation and liver fibrosis and AMPK activation has not been elucidated. Here we reported that FA ameliorated CCl4-induced inflammation and fibrotic liver damage in mice as indicated by reduced levels of serum liver function enzyme activities and decreased expression of genes and proteins associated with fibrogenesis. Additionally, FA inhibited hepatic oxidative stress, macrophage activation and HSC activation via AMPK phosphorylation in different liver cells. Mechanically, without the participation of LKB1, FA-induced anti-inflammatory and anti-fibrotic effects were abrogated by a specific AMPK inhibitor, compound C. Combining with the results of molecular docking, surface plasmon resonance and co-immunoprecipitation assays, we further demonstrated that FA directly bound to and inhibited PTP1B, an enzyme responsible for dephosphorylating key protein kinases, and eventually leading to the phosphorylation of AMPK. In summary, our results indicated that FA alleviated oxidative stress, hepatic inflammation and fibrotic response in livers through PTP1B-AMPK signaling pathways. Taken together, we provide novel insights into the potential of FA as a natural product-derived therapeutic agent for the treatment of fibrotic liver injury.

12.
Front Pharmacol ; 12: 826628, 2021.
Article in English | MEDLINE | ID: mdl-35087411

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), manifested as the aberrant accumulation of lipids in hepatocytes and inflammation, has become an important cause of advanced liver diseases and hepatic malignancies worldwide. However, no effective therapy has been approved yet. Aurantio-obtusin (AO) is a main bioactive compound isolated from Cassia semen that has been identified with multiple pharmacological activities, including improving adiposity and insulin resistance. However, the ameliorating effects of AO on diet-induced NAFLD and underlying mechanisms remained poorly elucidated. Our results demonstrated that AO significantly alleviated high-fat diet and glucose-fructose water (HFSW)-induced hepatic steatosis in mice and oleic acid and palmitic acid (OAPA)-induced lipid accumulation in hepatocytes. Remarkably, AO was found to distinctly promote autophagy flux and influence the degradation of lipid droplets by inducing AMPK phosphorylation. Additionally, the induction of AMPK triggered TFEB activation and promoted fatty acid oxidation (FAO) by activating PPARα and ACOX1 and decreasing the expression of genes involved in lipid biosynthesis. Meanwhile, the lipid-lowing effect of AO was significantly prevented by the pretreatment with inhibitors of autophagy, PPARα or ACOX1, respectively. Collectively, our study suggests that AO ameliorates hepatic steatosis via AMPK/autophagy- and AMPK/TFEB-mediated suppression of lipid accumulation, which opens new opportunities for pharmacological treatment of NAFLD and associated complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...