Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(2): 272-285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172439

ABSTRACT

The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.


Subject(s)
Neuralgia , Ventral Tegmental Area , Mice , Animals , Gyrus Cinguli , Hyperalgesia , Feedback , Dopaminergic Neurons/physiology , gamma-Aminobutyric Acid
2.
Nat Commun ; 14(1): 5347, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660056

ABSTRACT

Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.

3.
Phytomedicine ; 117: 154912, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295023

ABSTRACT

BACKGROUND: Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity. PURPOSE: Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy. METHODS: On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model. RESULTS: Twenty-three novel alkannin derivatives were designed and synthesized to improve the cytotoxicity selectivity. Among these derivatives, derivative 23 showed the highest cytotoxicity selectivity between cancer and normal cells. The anti-proliferative activity of derivative 23 on A549 cells (IC50 = 1.67 ± 0.34 µM) was 10-fold higher than L02 cells (IC50 = 16.77 ± 1.44 µM) and 5-fold higher than MDCK cells (IC50 = 9.23 ± 0.29 µM) respectively. Subsequently, fluorescent staining and flow cytometric analysis showed that derivative 23 was able to induce apoptosis of A549 cells and arrest the cell cycle in the G0/G1 phase. In addition, the mechanistic studies suggested derivative 23 was an inhibitor of pyruvate kinase; it could regulate glycolysis by inhibiting the activation of the phosphorylation of PKM2/STAT3 signaling pathway. Furthermore, studies in vivo demonstrated derivative 23 significantly inhibited the growth of xenograft tumor. CONCLUSION: In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Naphthoquinones , Humans , Mice , Animals , Pyruvate Kinase/metabolism , Cell Line, Tumor , Naphthoquinones/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Apoptosis , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
J Ethnopharmacol ; 303: 115924, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36414217

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic bronchitis (CB) affects a growing number of people and may be linked to lung function impairment. The traditional Chinese medicine formula Houpo Mahuang Decoction (HPMHD) has been used for clinical treatment of respiratory diseases for thousands of years. Until now, its bioactive ingredients, potential targets and molecular mechanism remain unclear. AIM OF THE STUDY: To investigate the effect of HPMHD on the treatment of CB and explore the bioactive ingredients and possible mechanisms of HPMHD against CB. MATERIALS AND METHODS: UHPLC-Q Exactive Orbitrap HRMS was performed to analyze the chemical components of HPMHD. The mechanism of multiple components, targets and pathways of HPMHD in the treatment of chronic bronchitis were explored by network pharmacology. Additionally, CB mice model induced by lipopolysaccharide (LPS) and smoking was used to evaluate the anti-chronic bronchitis activity of HPMHD in vivo. Pulmonary pathology was determined by hematoxylin and eosin (H&E) measurement. The levels of TNF-α and IL-6 in lung were measured by ELISA. The immunofluorescence experiments were carried out for the expression of IL-1ß, TNF-α, IL-6 and NF-κB p-P65/P65 in lung. Western blot assays were performed to quantify and visualize the protein expression of NF-κB p-P65/P65 in mice lung. RESULTS: Data showed that 79 compounds were identified in HPMHD. The network pharmacology results showed 53 compounds were hinted their effectivity for the treatment of chronic bronchitis with HPMHD, such as ephedrine, schisantherin A, and honokiol. The main targets were predicted as 37 genes, including TNF, TP53, IL6 and so on. HPMHD ameliorated lung damages in mice and inhibited the NF-κB signaling pathway, one of the pathways plotted by KEGG pathway enrichment analysis, by reducing IL-1ß, TNF-α and IL-6 expression and significantly downregulating the NF-κB p-P65/P65. CONCLUSION: In summary, the complex chemical components of HPHMD was successfully elucidate by UHPLC-Q Exactive Orbitrap HRMS. The study based on network pharmacology and experiment verification indicated that HPMHD can decreased inflammatory response in lung to treat CB. The underlying mechanism may be related to the reduction of inflammation by down-regulated the NF-κB pathways.


Subject(s)
Bronchitis, Chronic , Drugs, Chinese Herbal , Animals , Mice , NF-kappa B , Chromatography, High Pressure Liquid , Interleukin-6 , Network Pharmacology , Tumor Necrosis Factor-alpha , Bronchitis, Chronic/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
RSC Adv ; 12(46): 30001-30007, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321084

ABSTRACT

Sinomenine (SIN) has long been known as an anti-inflammatory drug, while poor efficiency and large-dose treatment had limited its further application. A series of novel SIN derivatives 1-26 were designed and synthesized to improve its anti-inflammatory activity. The anti-inflammatory activity evaluation showed most of the derivatives exhibited enhanced anti-inflammatory activity in vitro compared to SIN. Compound 17 significantly inhibited LPS-induced secretion of pro-inflammatory factors NO (IC50 = 30.28 ± 1.70 µM), and suppressed the expression of iNOS, IL-6 and TNF-α in RAW264.7 cells. Moreover, compound 17 showed excellent anti-inflammatory in mouse paw edema. Immunohistochemistry results revealed that compound 17 exerted anti-inflammatory activity by inhibiting the pro-inflammatory cytokine TNF-α. Furthermore, compound 17 exhibited an analgesic effect in vivo. The results attained in this study indicated that compound 17 had the potential to be developed into an anti-inflammation and analgesic agent.

6.
Anal Chem ; 94(41): 14251-14256, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36194134

ABSTRACT

Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.

7.
Rev Sci Instrum ; 93(8): 084702, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050060

ABSTRACT

An exponential spacing and sinusoidal folded helical (ESSFH) antenna backed with a cavity is developed in this paper. Compared with the conventional helical (CH) antenna, the proposed antenna not only has smaller dimension but also exhibits a wider working bandwidth, a higher gain, and a better circular polarization (CP) characteristic. To reduce the dimension of the helical antenna, a sinusoidal structure is adopted along the circumference of the helix. However, it deteriorates the CP characteristic of the antenna. Therefore, the structure of the exponential helix spacing is introduced into the sinusoidal folded helical (SFH) antenna. Then, to further improve the gain of the ESSFH antenna, its ground plane is replaced by an optimized cavity. Compared with the CH antenna, the helix diameter of the ESSFH antenna Dλ is reduced from 0.32 to 0.23, and its volume is reduced to 53%. The ESSFH antenna backed with a cavity has an impedance bandwidth of 0.43-1.02 GHz, which is much wider than 0.48-0.60 GHz of the CH antenna. Moreover, it has an axial ratio of 1.77, while the axial ratio of the CH antenna is 2.61. In addition, its effective potential gain is 0.56, which is 22% higher than that of the CH antenna.


Subject(s)
Wireless Technology , Electric Impedance , Equipment Design
8.
Proc Natl Acad Sci U S A ; 119(20): e2111051119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35537054

ABSTRACT

Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis­endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosis­endocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.


Subject(s)
Endocytosis , Synaptic Transmission , Synaptotagmin I , Calcium/metabolism , Endocytosis/physiology , Exocytosis/physiology , Neurons/metabolism , Synaptotagmin I/metabolism
9.
ACS Cent Sci ; 8(2): 184-191, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35233451

ABSTRACT

Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.

10.
Nat Commun ; 13(1): 273, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35022418

ABSTRACT

The Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.

11.
Eur J Med Chem ; 218: 113388, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33784603

ABSTRACT

Diabetic kidney disease (DKD) is a major feature of the final stage of nearly all cause types of diabetes mellitus (DM). To date, few safe and effective drugs are available to treat. Peroxisome proliferator-activated receptors (PPARs), comprised of three members: PPAR-α, PPAR-δ and PPAR-γ, play a protective role in the DKD through glycemic control and lipid metabolism, whereas systemic activation of PPAR-γ causes serious side-effects in clinical trials. GFT505 is a dual PPAR-α/δ agonist, and the selectivity against PPAR-γ is still to be improved. Sulfuretin has been shown to suppress the expression of PPAR-γ and improve the pathogenesis of diabetic complications. In this study, by hybridizing the carboxylic acid of GFT505 and the parent nucleus of sulfuretin, we pioneeringly designed and synthetized a series of novel dual PPAR-α/δ agonists, expecting to provide a better benefit/risk ratio for PPARs. Of all the synthesized compounds, compound 12 was identified with highly activity on PPAR-α/δ and higher selectivity against PPAR-γ than that of GFT505 (EC50: hPPAR-α: 0.26 µM vs.0.76 µM; hPPAR-δ: 0.50 µM vs.0.73 µM; hPPAR-γ: 4.22 µM vs.2.79 µM). The molecular docking studies also depicted good binding affinity of compound 12 for PPAR-α and PPAR-δ compared to GFT505. Furthermore, compound 12 exhibited an evidently renoprotective effect on the DKD through inhibiting inflammatory process, which might at least partly via JNK/NF-κB pathways in vivo and in vitro. Overall, compound 12 hold therapeutic promise for DKD.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Hypoglycemic Agents/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Survival/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Molecular Structure , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism , Rats , Rats, Sprague-Dawley , Streptozocin , Structure-Activity Relationship
12.
Anal Methods ; 13(11): 1318-1331, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33629983

ABSTRACT

Metal-organic frameworks (MOFs) are highly ordered framework systems composed of metal centers and organic linkers formed through coordination bonds. The diversity of metal elements and easily modified organic ligands, together with controllable synthetic approaches, gives rise to the designability of various MOF structures and topologies and the capability of MOFs to be functionalized. Their structural diversity provides MOFs with many unique properties, such as permanent porosity, flexible structures, thermostability, and high adsorption capacity, leading to great practicability in technical applications. In this review, we concentrate on the applications of MOFs in the field of gas chromatography, high-performance liquid chromatography, and the enrichment of biomolecules, based on rational arrangements in the structures and functions of MOFs. Moreover, we emphasize the importance of structural and chemical regulations for the improvement of separation efficiency.

13.
Curr Drug Deliv ; 18(7): 914-921, 2021.
Article in English | MEDLINE | ID: mdl-33234104

ABSTRACT

BACKGROUND: In the field of antibacterial, nanomaterials are favored by researchers because of their unique advantages. Medicinal plants, especially traditional Chinese medicine, are considered to be an important source of new chemicals with potential therapeutic effects, as well as an important source for the discovery of new antibiotics. MRSA is endangering people's lives as a kind of multidrug-resistant Staphylococcus aureus, which is resistant to tetracycline, amoxicillin, norfloxacin and other first-line antibiotics. It is a hotspot to find good anti-drug-resistant bacteriae, nature-originated nanomaterials with good biocompatibility. OBJECTIVE: We reported the formation of phytochemical nanoparticles (NPs) by the self-assembly of berberine (BBR) and 3,4,5-methoxycinnamic acid (3,4,5-TCA) from Chinese herb medicine, which had good antibacterial activity against MRSA. METHODS AND RESULTS: We found that NPs had good antibacterial activity against MRSA; especially, its antibacterial activity was better than first-line amoxicillin, norfloxacin and its self-assembling precursors on MRSA. When the concentration reached 0.1 µmol/mL, the inhibition rate of NPs reached 94.62%, which was higher than that of BBR and the other two antibiotics (p < 0.001). It was observed by Field-Emission Scanning Electron Microscopy (FESEM) that NPs could directly adhere to the bacterial surface, which might be an important aspect of the antibacterial activity of NPs. Meanwhile, we further analyzed that the self-assembly was formed by hydrogen bonds and π-π stacking through Ultraviolet-Visible (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), hydrogen Nuclear Magnetic Spectrum (1H NMR), and powder X-ray Diffraction (pXRD). NPs' morphology was observed by FESEM and TEM. The particle size and surface charge were characterized by Dynamic Light Scattering (DLS); and the surface charge was -31.6 mv, which proved that the synthesized NPs were stable. CONCLUSION: We successfully constructed a naturally self-assembled nanoparticle, originating from traditional Chinese medicine, which had a good antibacterial activity for MRSA. It is a promising way to obtain natural nanoparticles from medicinal plants and apply them to antibacterial therapy.


Subject(s)
Berberine , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Anti-Bacterial Agents/pharmacology , Humans , Medicine, Chinese Traditional , Microbial Sensitivity Tests , Phytochemicals , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
14.
Rev Sci Instrum ; 91(8): 084703, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872903

ABSTRACT

Output power of a transistorized pulser is usually limited by the power capacity of avalanche transistors. To improve the total output power, the power synthesis method is widely used, in which a single pulser with high output power and high time base stability is required. However, the time base stability tends to deteriorate as the output power increases. To improve the output power under the premise of high time base stability, from the perspective of carrier movement, the mechanisms of pulse jitter and pulse drift are investigated. It is found that the pulse jitter is caused by time dispersion of the ionization process in the collector depletion region, while the pulse drift is due to the decrement of the diffusion coefficient Dn and the electron mobility µn, which are both temperature-dependent. Based on the microscopic theoretical study, some macroscopic improvements on the time base stability are made. Some parameters of the trigger pulse and the circuit (e.g., charging capacitance) are optimized experimentally. Consequently, we achieved a pulser with an amplitude of 1.8 kV, pulse jitter of 25 ps, pulse drift of 100 ps/min at a pulse repetition frequency (PRF) of 100 kHz. Additionally, a new parameter k, the product of the highest PRF f and the peak power Ep, is defined to evaluate the output power. With almost the same time base stability, the proposed pulser has a k of 6.48 GHz W, which is improved significantly. Finally, a synthesized pulser with an amplitude of 2.5 kV and highest PRF of 100 kHz is achieved.

15.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867101

ABSTRACT

Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes solubilization possible. This overview provides guidance regarding a better understanding of GlycyrrhizaeRadix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further development and utilization of Glycyrrhizae Radix et Rhizoma.


Subject(s)
Drugs, Chinese Herbal/chemistry , Glycyrrhiza/chemistry , Saponins/chemistry , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Molecular Structure
16.
Chem Commun (Camb) ; 56(63): 9036-9039, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32643719

ABSTRACT

Transition metal dichalcogenides and carbonitrides (TMDs and MXenes) have attracted great attention in electrochemistry due to their tunable electronic structures. Herein, a new compound of Nb2Se2C is designed as a "TMD-MXene"-like material. It exhibits better oxygen evolution reaction performance than most other reported TMDs, MXenes, and commercial electrocatalysts due to the enriched active sites and excellent conductivity.

17.
Molecules ; 25(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093264

ABSTRACT

Betulinic acid (BA) is a star member of the pentacyclic triterpenoid family, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, 21 BA-nitrogen heterocyclic derivatives were synthetized, in addition to four intermediates, 23 of which were first reported. Moreover, they were screened for in-vitro cytotoxicity against four tumor cell lines (Hela, HepG-2, BGC-823 and SK-SY5Y) by a standard methylthiazol tetrazolium (MTT) assay. The majority of these derivatives showed much stronger cytotoxic activity than BA. Remarkably, the most potent compound 7e (the half maximal inhibitory concentration (IC50) of which was 2.05 ± 0.66 µM) was 12-fold more toxic in vitro than BA-treated Hela. Furthermore, multiple fluorescent staining techniques and flow cytometry collectively revealed that compound 7e could induce the early apoptosis of Hela cells. Structure-activity relationships were also briefly discussed. The present study highlighted the importance of introducing nitrogen heterocyclic rings into betulinic acid in the discovery and development of novel antitumor agents.


Subject(s)
Antineoplastic Agents , Cytotoxins , Neoplasms/drug therapy , Triterpenes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Screening Assays, Antitumor , HeLa Cells , Hep G2 Cells , Humans , Neoplasms/metabolism , Neoplasms/pathology , Pentacyclic Triterpenes , Structure-Activity Relationship , Betulinic Acid
18.
J Am Chem Soc ; 141(42): 16903-16914, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31566959

ABSTRACT

Layered sulfides with high selectivity for binding heavy metal ions and radionuclide ions are promising materials in effluent treatment and water purification. Here we present a rationally designed layered sulfide Kx[Bi4-xMnxS6] (x = 1.28) deriving from the Bi2Se3-structure type by targeted substitution to generate quintuple [Bi4-xMnxS6]x- layers and K+ cations between them. The material has dual functionality: it is an attractive semiconductor with a bandgap of 1.40 eV and also an environmental remediation ion-exchange material. The compound is paramagnetic, and optical adsorption spectroscopy and DFT electronic structure calculations reveal that it possesses a direct band gap and a work function of 5.26 eV. The K+ ions exchange readily with alkali or alkaline-earth ions (Rb+, Cs+, and Sr2+) or soft ions (Pb2+, Cd2+, Cr3+, and Zn2+). Furthermore, when the K+ ions are depleted the Mn2+ ions in the Bi2Se3-type slabs can also be replaced by soft ions, achieving large adsorption capacities. The ion exchange reactions of Kx[Bi4-xMnxS6] can be used to create new materials of the type Mx[Bi4-xMnxS6] in a low temperature kinetically controlled manner with significantly different electronic structures. The Kx[Bi4-xMnxS6] (x = 1.28) exhibits efficient capture of Cd2+ and Pb2+ ions with high distribution coefficient, Kd (107 mL/g), and exchange capacities of 221.2 and 342.4 mg/g, respectively. The material exhibits excellent capacities even in high concentration of competitive ions and over a broad pH range (2.5-11.0). The results highlight the promise of the Kx[Bi4-xMnxS6] (x = 1.28) phase to serve not only as a highly selective adsorbent for industrial and nuclear wastewater but also as a magnetic 2D semiconductor for optoelectronic applications.

19.
Inorg Chem ; 57(7): 3956-3962, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29561142

ABSTRACT

Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS2 ( Eg = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn1- xTi xS2 is able to be formed, which is attributed to the isostructural structure of SnS2 and TiS2. These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (eg), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

20.
Sci Bull (Beijing) ; 63(15): 957-963, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-36658891

ABSTRACT

We suggest that a family of Ni-based compounds, which contain [Ni2M2O]2- (M = chalcogen) layers with an antiperovskite structure constructed by mixed-anion Ni complexes, NiM4O2, can be potential high temperature superconductors (high-Tc) upon doping or applying pressure. The layer structures have been formed in many other transitional metal compounds such as La2B2Se2O3 (B = Mn, Fe, Co). For the Ni-based compounds, we predict that the parental compounds host collinear antiferromagnetic states similar to those in iron-based high temperature superconductors. The electronic physics near Fermi energy is controlled by two egd-orbitals with completely independent in-plane kinematics. We predict that the superconductivity in this family is characterized by strong competition between extended s-wave and d-wave pairing symmetries.

SELECTION OF CITATIONS
SEARCH DETAIL
...