Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(3): e22823, 2023 03.
Article in English | MEDLINE | ID: mdl-36809668

ABSTRACT

The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.


Subject(s)
Fibronectins , Neural Cell Adhesion Molecule L1 , Fibronectins/physiology , X-Rays , Scattering, Small Angle , X-Ray Diffraction , Antibodies, Monoclonal , Cell Adhesion/physiology , Neurites
2.
ACS Appl Mater Interfaces ; 15(6): 8770-8782, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723177

ABSTRACT

We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.


Subject(s)
COVID-19 , SARS-CoV-2 , Adsorption , Proteins , Spike Glycoprotein, Coronavirus , Titanium/chemistry
3.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31988175

ABSTRACT

Borrelia burgdorferisensu lato, the causative agent of tick-borne Lyme borreliosis (LB), has a limited metabolic capacity and needs to acquire nutrients, such as amino acids, fatty acids, and nucleic acids, from the host environment. Using X-ray crystallography, liquid chromatography-mass spectrometry, microscale thermophoresis, and cellular localization studies, we show that basic membrane protein D (BmpD) is a periplasmic substrate-binding protein of an ABC transporter system binding to purine nucleosides. Nucleosides are essential for bacterial survival in the host organism, and these studies suggest a key role for BmpD in the purine salvage pathway of B. burgdorferi sensu lato Because B. burgdorferisensu lato lacks the enzymes required for de novo purine synthesis, BmpD may play a vital role in ensuring access to the purines needed to sustain an infection in the host. Furthermore, we show that, although human LB patients develop anti-BmpD antibodies, immunization of mice with BmpD does not confer protection against B. burgdorferi sensu lato infection.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Borrelia burgdorferi Group/enzymology , Nucleoside Transport Proteins/chemistry , Nucleoside Transport Proteins/metabolism , Purines/metabolism , Animals , Antibodies, Bacterial/blood , Bacterial Proteins/immunology , Biological Transport, Active , Chromatography, Liquid , Crystallography, X-Ray , Humans , Lyme Disease/immunology , Lyme Disease/prevention & control , Mass Spectrometry , Mice , Nucleoside Transport Proteins/immunology , Protein Binding , Protein Conformation
4.
Biochem J ; 476(6): 1009-1020, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30877192

ABSTRACT

Spermidine is a ubiquitous polyamine synthesized by spermidine synthase (SPDS) from the substrates, putrescine and decarboxylated S-adenosylmethionine (dcAdoMet). SPDS is generally active as homodimer, but higher oligomerization states have been reported in SPDS from thermophiles, which are less specific to putrescine as the aminoacceptor substrate. Several crystal structures of SPDS have been solved with and without bound substrates and/or products as well as inhibitors. Here, we determined the crystal structure of SPDS from the cyanobacterium Synechococcus (SySPDS) that is a homodimer, which we also observed in solution. Unlike crystal structures reported for bacterial and eukaryotic SPDS with bound ligands, SySPDS structure has not only bound putrescine substrate taken from the expression host, but also spermidine product most probably as a result of an enzymatic reaction. Hence, to the best of our knowledge, this is the first structure reported with both amino ligands in the same structure. Interestingly, the gate-keeping loop is disordered in the putrescine-bound monomer while it is stabilized in the spermidine-bound monomer of the SySPDS dimer. This confirms the gate-keeping loop as the key structural element that prepares the active site upon binding of dcAdoMet for the catalytic reaction of the amine donor and putrescine.


Subject(s)
Bacterial Proteins/chemistry , Putrescine/chemistry , Spermidine Synthase/chemistry , Synechococcus/enzymology , Crystallography, X-Ray , Protein Domains , Protein Structure, Secondary
5.
Sci Rep ; 8(1): 2086, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391504

ABSTRACT

Human primary amine oxidase (hAOC3), also known as vascular adhesion protein 1, mediates leukocyte rolling and trafficking to sites of inflammation by a multistep adhesion cascade. hAOC3 is absent on the endothelium of normal tissues and is kept upregulated during inflammatory conditions, which is an applicable advantage for imaging inflammatory diseases. Sialic acid binding immunoglobulin like-lectin 9 (Siglec-9) is a leukocyte ligand for hAOC3. The peptide (CARLSLSWRGLTLCPSK) based on the region of Siglec-9 that interacts with hAOC3, can be used as a specific tracer for hAOC3-targeted imaging of inflammation using Positron Emission Tomography (PET). In the present study, we show that the Siglec-9 peptide binds to hAOC3 and triggers its amine oxidase activity towards benzylamine. Furthermore, the hAOC3 inhibitors semicarbazide and imidazole reduce the binding of wild type and Arg/Ala mutated Siglec-9 peptides to hAOC3. Molecular docking of the Siglec-9 peptide is in accordance with the experimental results and predicts that the R3 residue in the peptide interacts in the catalytic site of hAOC3 when the topaquinone cofactor is in the non-catalytic on-copper conformation. The predicted binding mode of Siglec-9 peptide to hAOC3 is supported by the PET studies using rodent, rabbit and pig AOC3 proteins.


Subject(s)
Amine Oxidase (Copper-Containing)/chemistry , Cell Adhesion Molecules/chemistry , Molecular Docking Simulation , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Amine Oxidase (Copper-Containing)/metabolism , Binding Sites , Cell Adhesion Molecules/metabolism , Humans , Mutation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
6.
J Biol Chem ; 293(3): 1070-1087, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29187599

ABSTRACT

N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Caco-2 Cells , Crystallography, X-Ray , Glycosylation , HEK293 Cells , Humans , Protein Folding
7.
Nat Chem Biol ; 13(3): 290-294, 2017 03.
Article in English | MEDLINE | ID: mdl-28092359

ABSTRACT

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand ß6 of the Pdx1 (ßα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.


Subject(s)
Lysine/metabolism , Vitamin B 6/biosynthesis , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Carbon-Nitrogen Lyases , Lysine/chemistry , Models, Molecular , Molecular Structure , Nitrogenous Group Transferases/chemistry , Nitrogenous Group Transferases/metabolism , Vitamin B 6/chemistry
8.
PLoS One ; 11(11): e0166935, 2016.
Article in English | MEDLINE | ID: mdl-27893774

ABSTRACT

Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3-Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9-hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9-hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Antigens, CD/chemistry , Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Amine Oxidase (Copper-Containing)/chemistry , Animals , Antigens, CD/genetics , Arginine , Cell Adhesion Molecules/chemistry , Humans , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Protein Stability , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Semicarbazides/pharmacokinetics , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Spodoptera/genetics , Surface Plasmon Resonance
9.
Structure ; 20(1): 172-84, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22244765

ABSTRACT

Biosynthesis of vitamins is fundamental to malaria parasites. Plasmodia synthesize the active form of vitamin B(6) (pyridoxal 5'-phosphate, PLP) using a PLP synthase complex. The EM analysis shown here reveals a random association pattern of up to 12 Pdx2 glutaminase subunits to the dodecameric Pdx1 core complex. Interestingly, Plasmodium falciparum PLP synthase organizes in fibers. The crystal structure shows differences in complex formation to bacterial orthologs as interface variations. Alternative positioning of an α helix distinguishes an open conformation from a closed state when the enzyme binds substrate. The pentose substrate is covalently attached through its C1 and forms a Schiff base with Lys84. Ammonia transfer between Pdx2 glutaminase and Pdx1 active sites is regulated by a transient tunnel. The mutagenesis analysis allows defining the requirement for conservation of critical methionines, whereas there is also plasticity in ammonia tunnel construction as seen from comparison across different species.


Subject(s)
Glutaminase/chemistry , Models, Molecular , Multiprotein Complexes/metabolism , Plasmodium falciparum/enzymology , Protein Conformation , Pyridoxal Phosphate/biosynthesis , Ammonia/metabolism , Catalytic Domain/genetics , Crystallography , Enzyme Activation/genetics , Glutaminase/metabolism , Methionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...