Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 2): 133312, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914406

ABSTRACT

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe3+ crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.3 kPa to 44.5 kPa were obtained as a result of the combination of different Fe3+ (0.05-9.95 g L-1) and EPS (0.3-1.7 %) concentrations. All the hydrogels had a water content above 98 %. Three different hydrogels, named HA, HB, and HC, were chosen for further characterization. With strength values (G') of 3.2, 28.9, and 44.5 kPa, respectively, these hydrogels might meet the strength requirements for several specific applications. Their mechanical resistance increased as higher Fe3+ and polymer concentrations were used in their preparation (the compressive hardness increased from 8.7 to 192.1 kPa for hydrogel HA and HC, respectively). In addition, a tighter mesh was noticed for HC, which was correlated to its lower swelling ratio value compared to HA and HB. Overall, this preliminary study highlighted the potential of these hydrogels for tissue engineering, drug delivery, or wound healing applications.


Subject(s)
Alteromonas , Hydrogels , Iron , Polysaccharides, Bacterial , Hydrogels/chemistry , Alteromonas/chemistry , Polysaccharides, Bacterial/chemistry , Iron/chemistry , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Compressive Strength
2.
Int J Biol Macromol ; 261(Pt 2): 129577, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246459

ABSTRACT

Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.


Subject(s)
Fucose , Ice , Animals , Chlorocebus aethiops , Fucose/metabolism , Vero Cells , Freezing , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Cryopreservation/methods , Polysaccharides/pharmacology , Polymers/pharmacology , Cell Survival
3.
Electron. j. biotechnol ; 15(5): 5-5, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-657664

ABSTRACT

Oligosaccharides are implicated in the development of the immune response notably in complement activation. Anti-tumoural immunotherapy by monoclonal antibodies (mAbs) offers some advantages to chemotherapy including cell targeting but some of them are inefficient to generate cytotoxicity dependent complement (CDC) known to be important in the antibody’s efficacy. The aim of this study is to give a CDC activity of mAb by linkage of a complement activating oligosaccharide to this antibody via a hetero-bifunctional linker allowing control of the conjugation reaction. We worked on non Hodgkin Burkitt’s lymphoma as cancer source, Fab fragments of rituximab devoid of complement activity as mAb and the trisaccharide Gal alpha(1→3)Gal beta(1→4)GlcNAc as immunogenic glycan. The bioconjugate Fab-Gal was characterized by biochemical methods and we demonstrated that the α-Gal epitope was recognized by seric immunoglobulins. After checking the recognition capacity of the Fab-Gal conjugate for the CD20 epitope, in vitro assays were performed to evaluate the activation of the complement cascade by the Fab-Gal conjugate. The effect of this bioconjugate was confirmed by the evaluation of the proliferation response of Burkitt’s cell line. The relative facility realization of this strategy represents new approaches to increase activities of mAbs.


Subject(s)
Antigens, Heterophile , Cytotoxicity, Immunologic , Glucosyltransferases/immunology , Oligosaccharides/immunology , Complement System Proteins/immunology , Flow Cytometry , Immunotherapy , Lymphoma, Non-Hodgkin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL