Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(3)2023 05 25.
Article in English | MEDLINE | ID: mdl-37160127

ABSTRACT

Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb paralysis.Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural activity while the participants attempted to move individual fingers of the right hand. Offline, we classified attempted finger movements from neural firing rates using linear discriminant analysis with cross-validation. The participants then used the neural classifier online to control individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural representational geometry during individual finger movements of both hands.Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance = 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of the contralateral and ipsilateral hands.Significance. This is the first study to decode both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand restoration strategy for people with tetraplegia.


Subject(s)
Motor Cortex , Humans , Fingers , Movement , Hand , Parietal Lobe
2.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36125116

ABSTRACT

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals' motor cortex, which is known to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these stable representations to restore lost motor functions.


Subject(s)
Brain-Computer Interfaces , Motor Cortex , Adult , Female , Fingers/physiology , Humans , Magnetic Resonance Imaging/methods , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Movement/physiology , Paralysis
3.
Front Artif Intell ; 5: 868232, 2022.
Article in English | MEDLINE | ID: mdl-35592649

ABSTRACT

In the domain of credit risk assessment lenders may have limited or no data on the historical lending outcomes of credit applicants. Typically this disproportionately affects Micro, Small, and Medium Enterprises (MSMEs), for which credit may be restricted or too costly, due to the difficulty of predicting the Probability of Default (PD). However, if data from other related credit risk domains is available Transfer Learning may be applied to successfully train models, e.g., from the credit card lending and debt consolidation (CD) domains to predict in the small business lending domain. In this article, we report successful results from an approach using transfer learning to predict the probability of default based on the novel concept of Progressive Shift Contribution (PSC) from source to target domain. Toward real-world application by lenders of this approach, we further address two key questions. The first is to explain transfer learning models, and the second is to adjust features when the source and target domains differ. To address the first question, we apply Shapley values to investigate how and why transfer learning improves model accuracy, and also propose and test a domain adaptation approach to address the second. These results show that adaptation improves model accuracy in addition to the improvement from transfer learning. We extend this by proposing and testing a combined strategy of feature selection and adaptation to convert values of source domain features to better approximate values of target domain features. Our approach includes a strategy to choose features for adaptation and an algorithm to adapt the values of these features. In this setting, transfer learning appears to improve model accuracy by increasing the contribution of less predictive features. Although the percentage improvements are small, such improvements in real world lending could be of significant economic importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...