Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 433, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773359

ABSTRACT

BACKGROUND: Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS: Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION: This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.


Subject(s)
Brassica napus , Freezing , Plant Proteins , Brassica napus/genetics , Brassica napus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Genome, Plant , Cold-Shock Response/genetics
2.
Biotechnol Biofuels Bioprod ; 17(1): 29, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383469

ABSTRACT

BACKGROUND: The primary objective of rapeseed breeding is to enhance oil content, which is predominantly influenced by environmental factors. However, the molecular mechanisms underlying the impact of these environmental factors on oil accumulation remain inadequately elucidated. In this study, we used transcriptome data from two higher (HOC) and two lower oil content (LOC) inbred lines at 35 days after pollination (DAP) to investigate genes exhibiting stable expression across three different environments. Meanwhile, a genome-wide association study (GWAS) was utilized to detect candidate genes exhibiting significant associations with seed oil content across three distinct environments. RESULTS: The study found a total of 405 stable differentially expressed genes (DEGs), including 25 involved in lipid/fatty acid metabolism and 14 classified as transcription factors. Among these genes, BnBZIP10-A09, BnMYB61-A06, BnAPA1-A08, BnPAS2-A10, BnLCAT3-C05 and BnKASIII-C09 were also found to exhibit significant associations with oil content across multiple different environments based on GWAS of 50 re-sequenced semi-winter rapeseed inbred lines and previously reported intervals. Otherwise, we revealed the presence of additive effects among BnBZIP10-A09, BnKASIII-C09, BnPAS2-A10 and BnAPA1-A08, resulting in a significant increase in seed oil content. Meanwhile, the majority of these stable DEGs are interconnected either directly or indirectly through co-expression network analysis, thereby giving rise to an elaborate molecular network implicated in the potential regulation of seed oil accumulation and stability. CONCLUSIONS: The combination of transcription and GWAS revealed that natural variation in six environment-insensitive gene regions exhibited significant correlations with seed oil content phenotypes. These results provide important molecular marker information for us to further improve oil content accumulation and stability in rapeseed.

3.
Environ Sci Pollut Res Int ; 30(53): 113718-113728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853218

ABSTRACT

Currently, the effects of earthworm inoculation on cadmium-contaminated rice field remain unclear. In this study, four treatments were tested, including rice monoculture (CK), earthworm inoculation with low density (L, 30 g/m2), middle density (M, 60 g/m2), and high density (H, 90 g/m2). The pot and field experiment were conducted in Hunan Province, China. In the pot experiment, the H treatment significantly decreased the available cadmium concentration in 0 ~ 20 cm soil by 5.21% ~ 16.51%, and the M treatment significantly decreased in 0 ~ 10 cm soil by 7.29% ~ 8.96%. The H treatment significantly decreased the total cadmium concentration in 0 ~ 5 cm soil by 10.36%. Moreover, the earthworm inoculation treatments significantly reduced cadmium accumulation in rice organs. In the field experiment, the M and H treatment decreased the available cadmium concentration in 0 ~ 20 cm soil by 14.05% ~ 47.52% and the H treatment decreased the total cadmium concentration in 0 ~ 20 cm soil by 0.78% ~ 5.75% although there was no significant difference. Furthermore, the earthworm inoculation treatments significantly decreased cadmium accumulation in part of rice organs. In conclusion, this study recommends that earthworm inoculation is an effective method of controlling cadmium contamination for rice production.


Subject(s)
Oligochaeta , Oryza , Soil Pollutants , Animals , Cadmium/analysis , Soil Pollutants/analysis , Soil , China
4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37046988

ABSTRACT

During the growth period of rapeseed, if there is continuous rainfall, it will easily lead to waterlogging stress, which will seriously affect the growth of rapeseed. Currently, the mechanisms of rapeseed resistance to waterlogging stress are largely unknown. In this study, the rapeseed (Brassica napus) inbred lines G230 and G218 were identified as waterlogging-tolerant rapeseed and waterlogging-sensitive rapeseed, respectively, through a potted waterlogging stress simulation and field waterlogging stress experiments. After six days of waterlogging stress at the seedling stage, the degree of leaf aging and root damage of the waterlogging-tolerant rapeseed G230 were lower than those of the waterlogging-sensitive rapeseed G218. A physiological analysis showed that waterlogging stress significantly increased the contents of malondialdehyde, soluble sugar, and hydrogen peroxide in rape leaves and roots. The transcriptomic and metabolomic analysis showed that the differential genes and the differential metabolites of waterlogging-tolerant rapeseed G230 were mainly enriched in the metabolic pathways, biosynthesis of secondary metabolites, flavonoid biosynthesis, and vitamin B6 metabolism. Compared to G218, the expression levels of some genes associated with flavonoid biosynthesis and vitamin B metabolism were higher in G230, such as CHI, DRF, LDOX, PDX1.1, and PDX2. Furthermore, some metabolites involved in flavonoid biosynthesis and vitamin B6 metabolism, such as naringenin and epiafzelechin, were significantly up-regulated in leaves of G230, while pyridoxine phosphate was only significantly down-regulated in roots and leaves of G218. Furthermore, foliar spraying of vitamin B6 can effectively improve the tolerance to waterlogging of G218 in the short term. These results indicate that flavonoid biosynthesis and vitamin B6 metabolism pathways play a key role in the waterlogging tolerance and hypoxia stress resistance of Brassica napus and provide new insights for improving the waterlogging tolerance and cultivating waterlogging-tolerant rapeseed varieties.


Subject(s)
Brassica napus , Brassica rapa , Transcriptome , Brassica napus/metabolism , Gene Expression Profiling , Brassica rapa/genetics , Metabolome , Flavonoids/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics
5.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047249

ABSTRACT

A high oleic acid content is considered an essential characteristic in the breeding of high-quality rapeseed in China. Long-chain non-coding RNA (lncRNA) molecules play an important role in the plant's growth and its response to stress. To better understand the role of lncRNAs in regulating plant reproductive development, we analyzed whole-transcriptome and physiological data to characterize the dynamic changes in lncRNA expression during the four representative times of seed development of high- and low-oleic-acid rapeseed in three regions. We identified 21 and 14 lncRNA and mRNA modules, respectively. These modules were divided into three types related to region, development stages, and material. Next, we analyzed the key modules related to the oil content and the oleic acid, linoleic acid, and linolenic acid contents with physiological data and constructed the key functional network analysis on this basis. Genes related to lipid metabolism, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were present in the co-expression network, suggesting that the effect of these genes on lipid metabolism might be embodied by the expression of these lncRNAs. Our results provide a fresh insight into region-, development-stage-, and material-biased changes in lncRNA expression in the seeds of Brassica napus. Some of these lncRNAs may participate in the regulatory network of lipid accumulation and metabolism, together with regulated genes. These results may help elucidate the regulatory system of lncRNAs in the lipid metabolism of high-oleic-acid rapeseed seeds.


Subject(s)
Brassica napus , Brassica rapa , RNA, Long Noncoding , Brassica napus/genetics , Brassica napus/metabolism , Oleic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Plant Oils/metabolism , Lipid Metabolism/genetics , Plant Breeding , Brassica rapa/genetics , Brassica rapa/metabolism , Seeds/metabolism
6.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047446

ABSTRACT

The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3'H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.


Subject(s)
Brassica napus , Brassica napus/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Breeding , Flowers/metabolism , Gene Expression Regulation, Plant , Color
7.
PLoS One ; 18(4): e0284287, 2023.
Article in English | MEDLINE | ID: mdl-37053132

ABSTRACT

Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes ß-D-glucopyranosyl abscisate ß-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.


Subject(s)
Brassica napus , RNA, Long Noncoding , Brassica napus/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Plant Infertility/genetics , Gene Expression Regulation, Plant , Pollen/genetics , Flowers/genetics , Gene Expression Profiling
8.
Plants (Basel) ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432869

ABSTRACT

Rapeseed stores lipids in the form of oil bodies. Oil bodies in the seeds of higher plants are surrounded by oleosins. Adjusting oleosin protein levels can prevent the fusion of oil bodies and maintain oil body size during seed development. However, oil contents are affected by many factors, and studies on the complex molecular regulatory mechanisms underlying the variations in seed oil contents of B. napus are limited. In this study, a total of 53 BnOLEO (B. napus oleosin) genes were identified in the genome of B. napus through a genome-wide analysis. The promoter sequences of oleosin genes consisted of various light-, hormone-, and stress-related cis-acting elements, along with transcription factor (TF) binding sites, for 25 TF families in 53 BnOLEO genes. The differentially expressed oleosin genes between two high- and two low-oil-content accessions were explored. BnOLEO3-C09, BnOLEO4-A02, BnOLEO4-A09, BnOLEO2-C04, BnOLEO1-C01, and BnOLEO7-A03 showed higher expressions in the high-oil-content accessions than in low-oil-content accessions, at 25, 35, and 45 days after pollination (DAP) in two different environments. A regional association analysis of 50 re-sequenced rapeseed accessions was used to further analyze these six BnOLEO genes, and it revealed that the nucleotide variations in the BnOLEO1-C01 and BnOLEO7-A03 gene regions were related to the phenotypic variations in seed oil content. Moreover, a co-expression network analysis revealed that the BnOLEO genes were directly linked to lipid/fatty acid metabolism, TF, lipid transport, and carbohydrate genes, thus forming a molecular network involved in seed oil accumulation. These favorable haplotypes can be utilized in molecular marker-assisted selection in order to further improve seed oil contents in rapeseed.

9.
Plants (Basel) ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079626

ABSTRACT

Oil-body-membrane proteins (OBMPs) are essential structural molecules of oil bodies and also versatile metabolic enzymes involved in multiple cellular processes such as lipid metabolism, hormone signaling and stress responses. However, the global landscape for OBMP genes in oil crops is still lacking. Here, we performed genome-wide identification and characterization of OBMP genes in polyploid crop Brassica napus. B. napus contains up to 88 BnaOBMP genes including 53 oleosins, 20 caleosins and 15 steroleosins. Both whole-genome and tandem duplications have contributed to the expansion of the BnaOBMP gene family. These BnaOBMP genes have extensive sequence polymorphisms, and some harbor strong selection signatures. Various cis-acting regulatory elements involved in plant growth, phytohormones and abiotic and biotic stress responses are detected in their promoters. BnaOBMPs exhibit differential expression at various developmental stages from diverse tissues. Importantly, some BnaOBMP genes display spatiotemporal patterns of seed-specific expression, which could be orchestrated by transcriptional factors such as EEL, GATA3, HAT2, SMZ, DOF5.6 and APL. Altogether, our data lay the foundations for studying the regulatory mechanism of the seed oil storage process and provide candidate genes and alleles for the genetic improvement and breeding of rapeseed with high seed oil content.

10.
PLoS One ; 17(8): e0272798, 2022.
Article in English | MEDLINE | ID: mdl-35980939

ABSTRACT

To scientifically evaluate and utilize high-oleic acid rape germplasm resources and cultivate new varieties suitable for planting in the Hunan Province, 30 local high-oleic acid rape germplasms from Hunan were used as materials. The 12 personality indices of quality, yield, and resistance were comprehensively evaluated by variability, correlation, principal component, and cluster analyses. The results of variability showed that except for oleic acid, the lowest coefficient of variation was oil content, which was 0.06. Correlation analysis showed that oil content was positively correlated with main traits such as yield per plant and oleic acid, which could be used in the early screening of high-oleic rape germplasm. The results of principal component analysis showed that the 12 personality indicators were integrated into four principal components, and the cumulative contribution rate was 62.487%. The value of comprehensive coefficient 'F' was positively correlated with the first, second, and fourth principal components and negatively correlated with the third principal component. Cluster analysis showed that 30 high-oleic rape germplasms could be divided into four categories consisting of 9 (30%), 6 (20%), 7 (23%), and 8 (27%) high-oleic rape germplasms, each with the characteristics of "high disease resistance", "high yield", "high protein", and "more stability". This study not only provides a reference basis for high-oleic rape breeding but also provides a theoretical basis for their early screening.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Oleic Acid , Phenotype , Plant Breeding
11.
PLoS One ; 17(3): e0262587, 2022.
Article in English | MEDLINE | ID: mdl-35271582

ABSTRACT

Environmental abiotic stresses limit plant growth, development, and reproduction. This study aims to reveal the response of Brassica napus to salt stress. Here, transcriptomics, metabolomics, and proteomics analysis were performed on 15 Brassica napus leave samples treated with salt at different times. Through functional enrichment analyzing the differentially expressed genes (DEGs), differential metabolites (DMs) and differentially expressed proteins (DEPs), the key factors that dominate Brassica napus response to salt stress were identified. The results showed that the two key hormones responding to salt stress were Abscisic acid (ABA) and jasmonic acid (JA). Salt stress for 24h is an important milestone. Brassica napus adjusted multiple pathways at 24h to avoid over-response to salt stress and cause energy consumption. The increased expression in BnPP2C is tangible evidence. In response to salt stress, JA and ABA work together to reduce the damage caused by salt stress in Brassica napus. The increased expression of all BnJAZs after salt stress highlighted the function of JA that cannot be ignored responding to salt stress. In addition, some metabolites, such as N-acetyl-5-hydroxytryptamine, L-Cysteine and L-(+)-Arginine, play a critical role in maintaining the balance of ROS. Proteins like catalase-3, cysteine desulfurase, HSP90 and P450_97A3 were the most critical differential proteins in response to salt stress. These findings of this study provide data support for Brassica napus breeding.


Subject(s)
Brassica napus , Abscisic Acid/metabolism , Brassica napus/metabolism , Gene Expression Regulation, Plant , Genomics , Metabolomics , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Salt Stress , Stress, Physiological/genetics , Transcriptome
12.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216116

ABSTRACT

1258A is a new line of B.napus with Nsa cytoplasmic male sterility (CMS) with potential applications in hybrid rapeseed breeding. Sterile cytoplasm was obtained from XinJiang Sinapis arvensis through distant hybridization and then backcrossed with 1258B for many generations. However, the characteristics and molecular mechanisms underlying pollen abortion in this sterile line are poorly understood. In this study, a cytological analysis revealed normal microsporogenesis and uninucleate pollen grain formation. Pollen abortion was due to non-programmed cell death in the tapetum and the inability of microspores to develop into mature pollen grains. Sucrose, soluble sugar, and adenosine triphosphate (ATP) contents during microspore development were lower than those of the maintainer line, along with an insufficient energy supply, reduced antioxidant enzyme activity, and substantial malondialdehyde (MDA) accumulation in the anthers. Transcriptome analysis revealed that genes involved in secondary metabolite biosynthesis, glutathione metabolism, phenylpropane biosynthesis, cyanoamino acid metabolism, starch and sucrose metabolism, and glycerolipid metabolism may contribute to pollen abortion. The down regulation of nine cytochrome P450 monooxygenases genes were closely associated with pollen abortion. These results suggest that pollen abortion in 1258A CMS stems from abnormalities in the chorioallantoic membranes, energy deficiencies, and dysfunctional antioxidant systems in the anthers. Our results provide insight into the molecular mechanism underlying pollen abortion in Nsa CMS and provide a theoretical basis for better heterosis utilization in B.napus.


Subject(s)
Brassica napus/genetics , Cytoplasm/genetics , Hybridization, Genetic/genetics , Plant Proteins/genetics , Transcriptome/genetics , Cytosol/physiology , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Ontology , Plant Breeding/methods , Plant Infertility/genetics , Pollen/genetics , Starch/genetics
13.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613968

ABSTRACT

Histone deacetylases tuin (HDT) is a plant-specific protein subfamily of histone deacetylation enzymes (HDAC) which has a variety of functions in plant development, hormone signaling and stress response. Although the HDT family's genes have been studied in many plant species, they have not been characterized in Brassicaceae. In this study, 14, 8 and 10 HDT genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the HDTs were divided into four groups: HDT1(HD2A), HDT2(HD2B), HDT3(HD2C) and HDT4(HD2D). There was an expansion of HDT2 orthologous genes in Brassicaceae. Most of the HDT genes were intron-rich and conserved in gene structure, and they coded for proteins with a nucleoplasmin-like (NPL) domain. Expression analysis showed that B. napus, B. rapa, and B. oleracea HDT genes were expressed in different organs at different developmental stages, while different HDT subgroups were specifically expressed in specific organs and tissues. Interestingly, most of the Bna/Br/BoHDT2 members were expressed in flowers, buds and siliques, suggesting they have an important role in the development of reproductive organs in Brassicaceae. Expression of BnaHDT was induced by various hormones, such as ABA and ethylene treatment, and some subgroups of genes were responsive to heat treatment. The expression of most HDT members was strongly induced by cold stress and freezing stress after non-cold acclimation, while it was slightly induced after cold acclimation. In this study, the HDT gene family of Brassicaceae was analyzed for the first time, which helps in understanding the function of BnaHDT in regulating plant responses to abiotic stresses, especially freezing stresses.


Subject(s)
Brassica napus , Brassica rapa , Phylogeny , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Brassica napus/metabolism , Brassica rapa/genetics , Genes, Plant , Multigene Family , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
14.
Mol Breed ; 42(11): 69, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37313473

ABSTRACT

Plant height is a key morphological trait in rapeseed, which not only plays an important role in determining plant architecture, but is also an important characteristic related to yield. Presently, the improvement of plant architecture is a major challenge in rapeseed breeding. This work was carried out to identify genetic loci related to plant height in rapeseed. In this study, a genome-wide association study (GWAS) of plant height was performed using a Brassica 60 K Illumina Infinium SNP array and 203 Brassica napus accessions. Eleven haplotypes containing important candidate genes were detected and significantly associated with plant height on chromosomes A02, A03, A05, A07, A08, C03, C06, and C09. Moreover, regional association analysis of 50 resequenced rapeseed inbred lines was used to further analyze these eleven haplotypes and revealed nucleotide variation in the BnFBR12-A08 and BnCCR1-C03 gene regions related to the phenotypic variation in plant height. Furthermore, coexpression network analysis showed that BnFBR12-A08 and BnCCR1-C03 were directly connected with hormone genes and transcription factors and formed a potential network regulating the plant height of rapeseed. Our results will aid in the development of haplotype functional markers to further improve plant height in rapeseed. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01337-1.

15.
Int J Biol Macromol ; 188: 844-854, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34416264

ABSTRACT

Lipoxygenase (LOX, EC 1.13.11.12) is a non-haeme iron-containing dioxygenase family that catalyzes the oxygenation of polyunsaturated fatty acids into bio-functionally fatty acid diverse (oxylipins) and plays vital role in plant growth and development and responses to abiotic and biotic stresses. Though LOX genes have been studied in many plant species, their roles in Brassicaceae species are still unknown. Here, a set of 14, 18, and 33 putative LOX genes were identified in Brassica rapa, Brassica oleracea and Brassica napus (allotetraploid rapeseed), respectively, which could be divided into 9-LOX (LOX1/5), 13-LOX type I (LOX3/4/6), and type II (LOX2) subgroups. There was an expansion of LOX2 orthologous genes in Brassicaceae. Most of the LOX genes are intron rich and conserved in gene structure, and the LOX proteins all have the conserved lipoxygenase and PLAT/LH2 domain. Ka/Ks ratio revealed that the majority of LOXs underwent purifying selection in Brassicaceae. The light-, ABA-, MeJA-related cis-elements and MYB-binding sites in the promoters of BnaLOXs were the most abundant. BnaLOXs displayed different spatiotemporal expression patterns and various abiotic/biotic stress responsive expression patterns. BnaLOX1/5 were slightly or no response to phytohormones and abiotic stresses. BnaLOX3/4/6 predominantly express in roots and were strongly up-regulated by salinity and PEG treatments, and BnaLOX3/4 were the methyl jasmonate (MeJA) and salicylic acid (SA) early response genes and strongly induced by infection of Sclerotinia sclerotiorum; while the BnaLOX2 members predominantly express in stamens, were MeJA and SA continuous response genes and strongly repressed by cold, heat and waterlogging treatments in leaves. Our results are useful for understanding the biological functions of the BnaLOX genes in allotetraploid rapeseed.


Subject(s)
Brassica napus/enzymology , Brassica napus/genetics , Evolution, Molecular , Lipoxygenases/genetics , Tetraploidy , Brassica napus/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Lipoxygenases/metabolism , Nucleotide Motifs/genetics , Phylogeny , Plant Growth Regulators/pharmacology , Promoter Regions, Genetic/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Synteny/genetics , Temperature
16.
Plant Sci ; 310: 110980, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34315596

ABSTRACT

Flowering is an important turning point from vegetative growth to reproductive growth, and vernalization is an essential condition for the flowering of annual winter plants. To investigate the genetic architecture of flowering time in rapeseed, we used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with flowering time in 203 Chinese semi-winter rapeseed inbred lines. Twenty-one haplotype regions carrying one or more candidate genes showed a significant association with flowering time. Interestingly, we detected a SNP (Bn-scaff_22728_1-p285715) located in exon 3 of the BnVIN3-C03 gene that showed a significant association with flowering time on chromosome C03. Based on the SNP alleles A and G, two groups of accessions with early and late flowering time phenotypes were selected, respectively, and PCR amplification and gene expression analysis were combined to reveal the structural variation of the BnVIN3-C03 gene that affected flowering time. Moreover, we found that BnVIN3-C03 inhibited the expression of BnFLC-A02, BnFLC-A03.1, BnFLC-A10 and BnFLC-C03.1, thus modulating the flowering time of Brassica napus. This result provides insight into the genetic improvement of flowering time in B. napus.


Subject(s)
Brassica napus/genetics , Genome-Wide Association Study/methods , Transcriptome/genetics , Alleles , Chromosome Mapping , Flowers/genetics , Haplotypes/genetics , Plant Proteins/genetics , Quantitative Trait Loci/genetics
17.
Environ Pollut ; 285: 117218, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33933876

ABSTRACT

Oilseed rape (Brassica napus) has potential as a hyperaccumulator in the phytoremediation of cadmium (Cd)-contaminated soils. Oilseed rape varieties with higher Cd accumulation ability and Cd tolerance are ideal candidates for the hyperaccumulation of excess Cd. To explore the physiological and molecular mechanisms underlying Cd tolerance and high Cd accumulation in oilseed rape leaves, we examined two genotypes, "BN067" (Cd-sensitive with lower Cd accumulation in leaves) and "BN06" (Cd-tolerant with higher Cd accumulation in leaves). We characterized the physiological morphology, structure, subcellular distribution of Cd, cell wall components, cell chelates, and the transcriptional levels of the related genes. Greater Cd accumulation was observed in the cell walls and vacuoles of Cd-tolerant leaves, reducing Cd toxicity to the lamellar structure of the chloroplast thylakoid and leaf stomata. Higher expression of PMEs genes and lower expression of pectin methylesterase inhibitors (PMEI) genes improved pectin methylesterase (PME) activity in leaves of Cd-tolerant genotype. Stronger demethylation of pectin along with higher pectin and hemicellulose levels induced by lower pectinase and hemicellulose activities in the leaves of the Cd-tolerant genotype, resulting in higher Cd retention in the cell walls. Under Cd toxicity, higher Cd sequestration within the vacuoles of Cd-tolerant leaves was closely related to greater accumulation of Cd chelates with stronger biosynthesis in protoplasts. The results highlight the importance of using hyperaccumulation by plants to remediate our environment, and also provide a theoretical basis for the development of Cd-tolerant varieties.


Subject(s)
Brassica napus , Soil Pollutants , Brassica napus/genetics , Cadmium/analysis , Pectins , Plant Roots/chemistry , Polysaccharides , Soil Pollutants/analysis
18.
Theor Appl Genet ; 134(5): 1545-1555, 2021 May.
Article in English | MEDLINE | ID: mdl-33677638

ABSTRACT

KEY MESSAGE: Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.


Subject(s)
Brassica napus/genetics , Gene Expression Regulation, Plant , Plant Oils/metabolism , Plant Proteins/genetics , Seeds/genetics , Transcriptome , Brassica napus/growth & development , Brassica napus/metabolism , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Profiling , Genome-Wide Association Study , Phenotype , Plant Breeding/methods , Plant Proteins/metabolism , Seeds/growth & development , Seeds/metabolism
19.
Int J Biol Macromol ; 180: 14-27, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33722620

ABSTRACT

Phytochrome-interacting factors (PIFs) are members of basic helix-loop-helix (bHLH) transcription factors and the primary partners of phytochromes (PHY) in light signaling. PIFs interact with the Pfr forms of phytochrome to play an important role in the pathways of response to light and temperature in plants. In this study, 30, 12, and 16 potential PIF genes were identified in Brassica napus, Brassica rapa, Brassica oleracea, respectively, which could be divided into three subgroups. The Br/Bo/BnaPIF genes are intron-rich and similar to the PIF genes in Arabidopsis. However, unlike the AtPIFs that exist in multiple alternative-splicing forms, the majority of Br/Bo/BnaPIF genes have no alternative-splicing forms. A total of 52 Br/Bo/BnaPIF proteins have both the conserved active PHYB binding (APB) and bHLH domains. The Ka/Ks ratio revealed that most BnaPIFs underwent purifying selection. A promoter analysis found that light-related, abscisic acid-related and MYB-binding sites were the most abundant in the promoters of BnaPIFs. BnaPIF genes displayed different spatiotemporal patterns of expression and were regulated by light quality, circadian rhythms, cold, heat, and vernalization. Our results are useful for understanding the biological functions of PIF proteins in rapeseed.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Brassica napus/genetics , Brassica napus/metabolism , Brassica rapa/genetics , Brassica rapa/metabolism , Light , Phylogeny , Plant Proteins/genetics , Stress, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Phytochrome/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Signal Transduction/genetics , Synteny , Transcriptome/radiation effects
20.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182819

ABSTRACT

Improving crop nitrogen (N) limitation adaptation (NLA) is a core approach to enhance N use efficiency (NUE) and reduce N fertilizer application. Rapeseed has a high demand for N nutrients for optimal plant growth and seed production, but it exhibits low NUE. Epigenetic modification, such as DNA methylation and modification from small RNAs, is key to plant adaptive responses to various stresses. However, epigenetic regulatory mechanisms underlying NLA and NUE remain elusive in allotetraploid B. napus. In this study, we identified overaccumulated carbohydrate, and improved primary and lateral roots in rapeseed plants under N limitation, which resulted in decreased plant nitrate concentrations, enhanced root-to-shoot N translocation, and increased NUE. Transcriptomics and RT-qPCR assays revealed that N limitation induced the expression of NRT1.1, NRT1.5, NRT1.7, NRT2.1/NAR2.1, and Gln1;1, and repressed the transcriptional levels of CLCa, NRT1.8, and NIA1. High-resolution whole genome bisulfite sequencing characterized 5094 differentially methylated genes involving ubiquitin-mediated proteolysis, N recycling, and phytohormone metabolism under N limitation. Hypermethylation/hypomethylation in promoter regions or gene bodies of some key N-metabolism genes might be involved in their transcriptional regulation by N limitation. Genome-wide miRNA sequencing identified 224 N limitation-responsive differentially expressed miRNAs regulating leaf development, amino acid metabolism, and plant hormone signal transduction. Furthermore, degradome sequencing and RT-qPCR assays revealed the miR827-NLA pathway regulating limited N-induced leaf senescence as well as the miR171-SCL6 and miR160-ARF17 pathways regulating root growth under N deficiency. Our study provides a comprehensive insight into the epigenetic regulatory mechanisms underlying rapeseed NLA, and it will be helpful for genetic engineering of NUE in crop species through epigenetic modification of some N metabolism-associated genes.


Subject(s)
Brassica napus/genetics , Brassica napus/metabolism , Epigenesis, Genetic , Nitrogen/metabolism , Adaptation, Physiological , Brassica napus/growth & development , DNA Methylation , Fertilizers , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , RNA, Plant/genetics , RNA, Plant/metabolism , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...