Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Genome Biol ; 25(1): 116, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715020

ABSTRACT

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Subject(s)
Genome , Genomic Structural Variation , Animals , Sus scrofa/genetics , Polymorphism, Single Nucleotide , Swine/genetics , Chromosome Mapping
2.
Sci Rep ; 14(1): 8529, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609445

ABSTRACT

Italy has a long history in beef production, with local breeds such as Marchigiana, Chianina, Romagnola, Maremmana, and Podolica which produce high-quality meat. Selection has improved meat production, precocity, growth ability and muscle development, but the genetic determinism of such traits is mostly unknown. Using 33K SNPs-data from young bulls (N = 4064) belonging to these five Italian breeds, we demonstrated that the Maremmana and Podolica rustic breeds are closely related, while the specialised Marchigiana, Chianina, and Romagnola breeds are more differentiated. A genome-wide association study for growth and muscle development traits (average daily gain during the performance test, weight at 1 year old, muscularity) was conducted in the five Italian breeds. Results indicated a region on chromosome 2, containing the myostatin gene (MSTN), which displayed significant genome-wide associations with muscularity in Marchigiana cattle, a breed in which the muscle hypertrophy phenotype is segregating. Moreover, a significant SNP on chromosome 14 was associated, in the Chianina breed, to muscularity. The identification of diverse genomic regions associated with conformation traits might increase our knowledge about the genomic basis of such traits in Italian beef cattle and, eventually, such information could be used to implement marker-assisted selection of young bulls tested in the performance test.


Subject(s)
Genome-Wide Association Study , Genomics , Cattle/genetics , Animals , Male , Humans , Chromosomes, Human, Pair 14 , Italy , Phenotype
3.
Plant Physiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478469

ABSTRACT

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long -reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1 were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). An ∼4 kb large deletion (DEL) and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by a long terminal repeats (LTRs) retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.

4.
Sci Rep ; 14(1): 6588, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504112

ABSTRACT

Gene atlases for livestock are steadily improving thanks to new genome assemblies and new expression data improving the gene annotation. However, gene content varies across databases due to differences in RNA sequencing data and bioinformatics pipelines, especially for long non-coding RNAs (lncRNAs) which have higher tissue and developmental specificity and are harder to consistently identify compared to protein coding genes (PCGs). As done previously in 2020 for chicken assemblies galgal5 and GRCg6a, we provide a new gene atlas, lncRNA-enriched, for the latest GRCg7b chicken assembly, integrating "NCBI RefSeq", "EMBL-EBI Ensembl/GENCODE" reference annotations and other resources such as FAANG and NONCODE. As a result, the number of PCGs increases from 18,022 (RefSeq) and 17,007 (Ensembl) to 24,102, and that of lncRNAs from 5789 (RefSeq) and 11,944 (Ensembl) to 44,428. Using 1400 public RNA-seq transcriptome representing 47 tissues, we provided expression evidence for 35,257 (79%) lncRNAs and 22,468 (93%) PCGs, supporting the relevance of this atlas. Further characterization including tissue-specificity, sex-differential expression and gene configurations are provided. We also identified conserved miRNA-hosting genes with human counterparts, suggesting common function. The annotated atlas is available at gega.sigenae.org.


Subject(s)
RNA, Long Noncoding , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chickens/genetics , Chickens/metabolism , Transcriptome , Molecular Sequence Annotation , Sequence Analysis, RNA
5.
J Dairy Sci ; 107(6): 4075-4091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38278299

ABSTRACT

The brain regulates multiple metabolic processes, such as food intake, energy expenditure, insulin secretion, hepatic glucose production, and glucose and fatty acid metabolism in adipose tissue, which are fundamental for the maintenance of energy and glucose homeostasis during lactation and pregnancy. In addition, brain expression has a fundamental impact on the development of maternal behavior. Although brain functions are partly regulated by long noncoding RNAs (lncRNAs), their expression profiles have not been characterized in depth in any ruminant species. We have sequenced the transcriptome of 12 brain tissues from 3 goats that were 1 mo pregnant and 4 nonpregnant goats to investigate their lncRNA expression patterns. Between 4,363 (adenohypophysis) and 4,604 (olfactory bulb) lncRNAs were expressed in brain tissues, leading us to establish a set of 794 already annotated lncRNAs and 5,098 novel lncRNA candidates. The detected lncRNAs shared features with those of other mammals, and tissue-specific lncRNAs were enriched in brain development-related terms. Differential expression analyses between goats that were 1 mo pregnant and nonpregnant goats showed that the lncRNA expression profiles of certain brain regions experience substantial changes associated with early pregnancy (238 lncRNAs are differentially expressed in the olfactory bulb), but others do not. Enrichment analysis showed that differentially expressed lncRNAs from the olfactory bulb are co-expressed with genes previously linked to behavioral changes related to pregnancy. These findings provide a first characterization of the landscape of lncRNA expression in the goat brain and provides valuable clues to understand the molecular events triggered by early pregnancy in the central nervous system.


Subject(s)
Brain , Goats , RNA, Long Noncoding , Animals , Goats/genetics , Goats/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Brain/metabolism , Pregnancy , Transcriptome , Lactation/genetics
6.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177344

ABSTRACT

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Swine/genetics , Animals , Humans , Genotype , Phenotype , Sequence Analysis, RNA
7.
Cell Genom ; 3(10): 100390, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868039

ABSTRACT

Assessment of genomic conservation between humans and pigs at the functional level can improve the potential of pigs as a human biomedical model. To address this, we developed a deep learning-based approach to learn the genomic conservation at the functional level (DeepGCF) between species by integrating 386 and 374 functional profiles from humans and pigs, respectively. DeepGCF demonstrated better prediction performance compared with the previous method. In addition, the resulting DeepGCF score captures the functional conservation between humans and pigs by examining chromatin states, sequence ontologies, and regulatory variants. We identified a core set of genomic regions as functionally conserved that plays key roles in gene regulation and is enriched for the heritability of complex traits and diseases in humans. Our results highlight the importance of cross-species functional comparison in illustrating the genetic and evolutionary basis of complex phenotypes.

8.
Front Genet ; 14: 1114749, 2023.
Article in English | MEDLINE | ID: mdl-37519888

ABSTRACT

Background: The brain is an extraordinarily complex organ with multiple anatomical structures involved in highly specialized functions related with behavior and physiological homeostasis. Our goal was to build an atlas of protein-coding gene expression in the goat brain by sequencing the transcriptomes of 12 brain regions in seven female Murciano-Granadina goats, from which three of them were 1-month pregnant. Results: Between 14,889 (cerebellar hemisphere) and 15,592 (pineal gland) protein-coding genes were expressed in goat brain regions, and most of them displayed ubiquitous or broad patterns of expression across tissues. Principal component analysis and hierarchical clustering based on the patterns of mRNA expression revealed that samples from certain brain regions tend to group according to their position in the anterior-posterior axis of the neural tube, i.e., hindbrain (pons and medulla oblongata), midbrain (rostral colliculus) and forebrain (frontal neocortex, olfactory bulb, hypothalamus, and hippocampus). Exceptions to this observation were cerebellum and glandular tissues (pineal gland and hypophysis), which showed highly divergent mRNA expression profiles. Differential expression analysis between pregnant and non-pregnant goats revealed moderate changes of mRNA expression in the frontal neocortex, hippocampus, adenohypophysis and pons, and very dramatic changes in the olfactory bulb. Many genes showing differential expression in this organ are related to olfactory function and behavior in humans. Conclusion: With the exception of cerebellum and glandular tissues, there is a relationship between the cellular origin of sampled regions along the anterior-posterior axis of the neural tube and their mRNA expression patterns in the goat adult brain. Gestation induces substantial changes in the mRNA expression of the olfactory bulb, a finding consistent with the key role of this anatomical structure on the development of maternal behavior.

9.
Sci Adv ; 9(18): eade1204, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134160

ABSTRACT

A comprehensive characterization of regulatory elements in the chicken genome across tissues will have substantial impacts on both fundamental and applied research. Here, we systematically identified and characterized regulatory elements in the chicken genome by integrating 377 genome-wide sequencing datasets from 23 adult tissues. In total, we annotated 1.57 million regulatory elements, representing 15 distinct chromatin states, and predicted about 1.2 million enhancer-gene pairs and 7662 super-enhancers. This functional annotation of the chicken genome should have wide utility on identifying regulatory elements accounting for gene regulation underlying domestication, selection, and complex trait regulation, which we explored. In short, this comprehensive atlas of regulatory elements provides the scientific community with a valuable resource for chicken genetics and genomics.


Subject(s)
Chickens , Regulatory Sequences, Nucleic Acid , Animals , Chickens/genetics , Regulatory Sequences, Nucleic Acid/genetics , Genomics , Chromatin , Genome , Enhancer Elements, Genetic
10.
Anim Genet ; 54(4): 491-499, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37127297

ABSTRACT

Hematological traits are important indicators of health status, and they are frequently used as criteria for clinical diagnosis. In humans, the genomic architecture of blood traits has been investigated in depth and thousands of associations with genetic variants have been found. In contrast, the association between marker genotypes and the variation of hematological traits has not been investigated in goats yet. Herewith, we have recorded 12 hematological parameters in 882 Murciano-Granadina goats that were also genotyped with the Goat SNP50 BeadChip (Illumina). Performance of a univariate genome-wide association study (GWAS) made it possible to detect one genomic region on goat chromosome (CHI) 21 (19.2-19.5 Mb) associated, at the genome-wide level of significance, with 4 red blood cell traits. The three markers displaying the highest significances were rs268272996 (CHI21: 19225290 bp), rs268273004 (CHI21: 19565629 bp) and rs268239059 (CHI13: 9615190 bp). Consistently, a multivariate GWAS indicated that the rs268273004 marker on chromosome 21 is associated with seven blood cell traits. Interestingly, this marker maps close to the FA Complementation Group I (FANCI) gene (CHI21: 20021947-20077025 bp), which is functionally related to Fanconi anemia, a syndrome characterized by bone marrow failure, aplastic anemia, and congenital disorders. We have also uncovered additional chromosome-wide significant associations between genetic markers and erythrocyte and leukocyte traits in the univariate GWAS. These findings evidence that the phenotypic variation of hematological traits in goats is regulated, at least to some extent, by polygenic determinants distributed in multiple chromosomes.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Animals , Genome-Wide Association Study/veterinary , Goats/genetics , Phenotype , Genotype
11.
Anim Genet ; 54(1): 35-44, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36385508

ABSTRACT

The annotation of animal genomes plays an important role in elucidating molecular mechanisms behind the genetic control of economically important traits. Here, we employed long-read sequencing technology, Oxford Nanopore Technology, to annotate the pig transcriptome across 17 tissues from two Yorkshire littermate pigs. More than 9.8 million reads were obtained from a single flow cell, and 69 781 unique transcripts at 50 108 loci were identified. Of these transcripts, 16 255 were found to be novel isoforms, and 22 344 were found at loci that were novel and unannotated in the Ensembl (release 102) and NCBI (release 106) annotations. Novel transcripts were mostly expressed in cerebellum, followed by lung, liver, spleen, and hypothalamus. By comparing the unannotated transcripts to existing databases, there were 21 285 (95.3%) transcripts matched to the NT database (v5) and 13 676 (61.2%) matched to the NR database (v5). Moreover, there were 4324 (19.4%) transcripts matched to the SwissProt database (v5), corresponding to 11 356 proteins. Tissue-specific gene expression analyses showed that 9749 transcripts were highly tissue-specific, and cerebellum contained the most tissue-specific transcripts. As the same samples were used for the annotation of cis-regulatory elements in the pig genome, the transcriptome annotation generated by this study provides an additional and complementary annotation resource for the Functional Annotation of Animal Genomes effort to comprehensively annotate the pig genome.


Subject(s)
Nanopore Sequencing , Transcriptome , Animals , Swine/genetics , Molecular Sequence Annotation , Sequence Analysis, RNA , Technology , High-Throughput Nucleotide Sequencing , Gene Expression Profiling/veterinary
12.
Front Genet ; 13: 997460, 2022.
Article in English | MEDLINE | ID: mdl-36246588

ABSTRACT

To identify and annotate transcript isoforms in the chicken genome, we generated Nanopore long-read sequencing data from 68 samples that encompassed 19 diverse tissues collected from experimental adult male and female White Leghorn chickens. More than 23.8 million reads with mean read length of 790 bases and average quality of 18.2 were generated. The annotation and subsequent filtering resulted in the identification of 55,382 transcripts at 40,547 loci with mean length of 1,700 bases. We predicted 30,967 coding transcripts at 19,461 loci, and 16,495 lncRNA transcripts at 15,512 loci. Compared to existing reference annotations, we found ∼52% of annotated transcripts could be partially or fully matched while ∼47% were novel. Seventy percent of novel transcripts were potentially transcribed from lncRNA loci. Based on our annotation, we quantified transcript expression across tissues and found two brain tissues (i.e., cerebellum and cortex) expressed the highest number of transcripts and loci. Furthermore, ∼22% of the transcripts displayed tissue specificity with the reproductive tissues (i.e., testis and ovary) exhibiting the most tissue-specific transcripts. Despite our wide sampling, ∼20% of Ensembl reference loci were not detected. This suggests that deeper sequencing and additional samples that include different breeds, cell types, developmental stages, and physiological conditions, are needed to fully annotate the chicken genome. The application of Nanopore sequencing in this study demonstrates the usefulness of long-read data in discovering additional novel loci (e.g., lncRNA loci) and resolving complex transcripts (e.g., the longest transcript for the TTN locus).

13.
J Anim Sci Biotechnol ; 13(1): 35, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35264251

ABSTRACT

BACKGROUND: Inbreeding depression can adversely affect traits related to fitness, reproduction and productive performance. Although current research suggests that inbreeding levels are generally low in most goat breeds, the impact of inbreeding depression on phenotypes of economic interest has only been investigated in a few studies based on genealogical data. RESULTS: We genotyped 1040 goats with the Goat SNP50 BeadChip. This information was used to estimate different molecular inbreeding coefficients and characterise runs of homozygosity and homozygosity patterns. We detected 38 genomic regions with increased homozygosity as well as 8 ROH hotspots mapping to chromosomes 1, 2, 4, 6, 14, 16 and 17. Eight hundred seventeen goats with available records for dairy traits were analysed to evaluate the potential consequences of inbreeding depression on milk phenotypes. Four regions on chromosomes 8 and 25 were significantly associated with inbreeding depression for the natural logarithm of the somatic cell count. Notably, these regions contain several genes related with immunity, such as SYK, IL27, CCL19 and CCL21. Moreover, one region on chromosome 2 was significantly associated with inbreeding depression for milk yield. CONCLUSIONS: Although genomic inbreeding levels are low in Murciano-Granadina goats, significant evidence of inbreeding depression for the logarithm of the somatic cell count, a phenotype closely associated with udder health and milk yield, have been detected in this population. Minimising inbreeding would be expected to augment economic gain by increasing milk yield and reducing the incidence of mastitis, which is one of the main causes of dairy goat culling.

14.
PeerJ ; 9: e12049, 2021.
Article in English | MEDLINE | ID: mdl-34692245

ABSTRACT

In the last decades, intensive selection programs have led to sustained increases of inbreeding in dairy cattle, a feature that might have adverse consequences on the viability and phenotypic performance of their offspring. This study aimed to determine the evolution of inbreeding of five Italian beef cattle breeds (Marchigiana, Chianina, Romagnola, Maremmana, and Podolica) during a period of almost 20 years (2002-2019). The estimates of Ho, He, Fhat2 , and Fped averaged across years (2002-2019) in the studied breeds fluctuated between 0.340-0.401, 0.348-0.392, -0.121-0.072, and 0.000-0.068, respectively. Moreover, annual rates of increase of the estimated inbreeding coefficients have been very low (Fhat2 = 0.01-0.02%; Fped = 0.003-0.004%). The use of a high number of bulls combined with strategies implemented by the Association of Italian Beef Cattle Breeders ANABIC to minimize inbreeding might explain these results. Despite the fact that diversity and inbreeding have remained quite stable during the last two decades, we have detected a sustained decrease of the population effective size of these five breeds. Such results should be interpreted with caution due to the inherent difficulty of estimating Ne from SNPs data in a reliable manner.

15.
Pest Manag Sci ; 77(11): 5170-5185, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34255407

ABSTRACT

BACKGROUND: Ralstonia solanacearum is one of the most devastating pathogens affecting crop production worldwide. The hydroxycoumarins (umbelliferone, esculetin and daphnetin) represent sustainable natural bioresources on controlling plant bacterial wilt. However, the antibacterial mechanism of hydroxycoumarins against plant pathogens still remains poorly understood. RESULTS: Here we characterized the effect of three hydroxycoumarins on the transcriptome of R. solanacearum. All three hydroxycoumarins were able to kill R. solanacearum, but their antibacterial activity impacted differently the bacterial transcriptome, indicating that their modes of action might be different. Treatment of R. solanacearum cultures with hydroxycoumarins resulted in a large number of differentially expressed genes (DEGs), involved in basic cellular functions and metabolic process, such as down-regulation of genes involved in fatty acid synthesis, lipopolysaccharides biosynthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport, as well as up-regulation of genes involved in transcriptional regulators, drug efflux, and oxidative stress responses. Future studies based on in vitro experiments are proposed to investigate lipopolysaccharides biosynthesis pathway leading to R. solanacearum cell death caused by hydroxycoumarins. Deletion of lpxB substantially inhibited the growth of R. solanacearum, and reduced virulence of pathogen on tobacco plants. CONCULSION: Our transcriptomic analyses show that specific hydroxycoumarins suppressed gene expression involved in fatty acid synthesis, RNA modification, ribosomal submits, oxidative phosphorylation and electrontransport. These findings provide evidence that hydroxycoumarins inhibit R. solanacearum growth through multi-target effect. Hydroxycoumarins could serve as sustainable natural bioresources against plant bacterial wilt through membrane destruction targeting the lipopolysaccharides biosynthesis pathway.


Subject(s)
Anti-Infective Agents , Ralstonia solanacearum , Anti-Bacterial Agents/pharmacology , Crop Protection , Plant Diseases , Transcriptome
16.
Genet Sel Evol ; 53(1): 43, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33947333

ABSTRACT

BACKGROUND: Mature microRNAs (miRNAs) play an important role in repressing the expression of a wide range of mRNAs. The presence of polymorphic sites in miRNA genes and their corresponding 3'UTR binding sites can disrupt canonical conserved miRNA-mRNA pairings, and thus modify gene expression patterns. However, to date such polymorphic sites in miRNA genes and their association with gene expression phenotypes and complex traits are poorly characterized in pigs. RESULTS: By analyzing whole-genome sequences from 120 pigs and wild boars from Europe and Asia, we identified 285 single nucleotide polymorphisms (SNPs) that map to miRNA loci, and 109,724 SNPs that are located in predicted 7mer-m8 miRNA binding sites within porcine 3'UTR. In porcine miRNA genes, SNP density is reduced compared with their flanking non-miRNA regions. By sequencing the genomes of five Duroc boars, we identified 12 miRNA SNPs that were subsequently genotyped in their offspring (N = 345, Lipgen population). Association analyses of miRNA SNPs with 38 lipid-related traits and hepatic and muscle microarray expression phenotypes recorded in the Lipgen population were performed. The most relevant detected association was between the genotype of the rs319154814 (G/A) SNP located in the apical loop of the ssc-miR-326 hairpin precursor and PPP1CC mRNA levels in the liver (q-value = 0.058). This result was subsequently confirmed by qPCR (P-value = 0.027). The rs319154814 (G/A) genotype was also associated with several fatty acid composition traits. CONCLUSIONS: Our findings show a reduced variability of porcine miRNA genes, which is consistent with strong purifying selection, particularly in the seed region that plays a critical role in miRNA binding. Although it is generally assumed that SNPs mapping to the seed region are those with the most pronounced consequences on mRNA expression, we show that a SNP mapping to the apical region of ssc-miR-326 is significantly associated with hepatic mRNA levels of the PPP1CC gene, one of its predicted targets. Although experimental confirmation of such an interaction is reported in humans but not in pigs, this result highlights the need to further investigate the functional effects of miRNA polymorphisms that are located outside the seed region on gene expression in pigs.


Subject(s)
Lipid Metabolism , MicroRNAs/genetics , Phenotype , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Swine/genetics , 3' Untranslated Regions , Animals , Female , Male , Multifactorial Inheritance , RNA, Messenger/metabolism , Swine/metabolism
18.
J Dairy Sci ; 103(12): 11605-11617, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33069406

ABSTRACT

Morphological traits are of great importance to dairy goat production given their effect on phenotypes of economic interest. However, their underlying genomic architecture has not yet been extensively characterized. Herein, we aimed to identify genomic regions associated with body, udder, and leg conformation traits recorded in 825 Murciano-Granadina goats. We genotyped this resource population using the GoatSNP50 BeadChip (Illumina Inc., San Diego, CA) and performed genome-wide association analyses using the GEMMA software. We found 2 genome-wide significant associations between markers rs268273468 [Capra hircus (CHI) 16:69617700] and rs268249346 (CHI 28:18321523) and medial suspensory ligament. In contrast, we did not detect any genome-wide significant associations for body and leg traits. Moreover, we found 12, 19, and 7 chromosome-wide significant associations for udder, body, and leg traits, respectively. Comparison of our data with previous studies revealed a low level of positional concordance between regions associated with morphological traits. In addition to technical factors, this lack of concordance could be due to a substantial level of genetic heterogeneity among breeds or to the strong polygenic background of morphological traits, which makes it difficult to detect genetic factors that have small phenotypic effects.


Subject(s)
Genome-Wide Association Study/veterinary , Goats/genetics , Mammary Glands, Animal/anatomy & histology , Animals , Body Weights and Measures/veterinary , Extremities/anatomy & histology , Female , Genotype , Goats/anatomy & histology , Phenotype , Polymorphism, Single Nucleotide
19.
Genet Sel Evol ; 52(1): 44, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32770942

ABSTRACT

BACKGROUND: In this work, our aim was to generate a map of the copy number variations (CNV) segregating in a population of Murciano-Granadina goats, the most important dairy breed in Spain, and to ascertain the main biological functions of the genes that map to copy number variable regions. RESULTS: Using a dataset that comprised 1036 Murciano-Granadina goats genotyped with the Goat SNP50 BeadChip, we were able to detect 4617 and 7750 autosomal CNV with the PennCNV and QuantiSNP software, respectively. By applying the EnsembleCNV algorithm, these CNV were assembled into 1461 CNV regions (CNVR), of which 486 (33.3% of the total CNVR count) were consistently called by PennCNV and QuantiSNP and used in subsequent analyses. In this set of 486 CNVR, we identified 78 gain, 353 loss and 55 gain/loss events. The total length of all the CNVR (95.69 Mb) represented 3.9% of the goat autosomal genome (2466.19 Mb), whereas their size ranged from 2.0 kb to 11.1 Mb, with an average size of 196.89 kb. Functional annotation of the genes that overlapped with the CNVR revealed an enrichment of pathways related with olfactory transduction (fold-enrichment = 2.33, q-value = 1.61 × 10-10), ABC transporters (fold-enrichment = 5.27, q-value = 4.27 × 10-04) and bile secretion (fold-enrichment = 3.90, q-value = 5.70 × 10-03). CONCLUSIONS: A previous study reported that the average number of CNVR per goat breed was ~ 20 (978 CNVR/50 breeds), which is much smaller than the number we found here (486 CNVR). We attribute this difference to the fact that the previous study included multiple caprine breeds that were represented by small to moderate numbers of individuals. Given the low frequencies of CNV (in our study, the average frequency of CNV is 1.44%), such a design would probably underestimate the levels of the diversity of CNV at the within-breed level. We also observed that functions related with sensory perception, metabolism and embryo development are overrepresented in the set of genes that overlapped with CNV, and that these loci often belong to large multigene families with tens, hundreds or thousands of paralogous members, a feature that could favor the occurrence of duplications or deletions by non-allelic homologous recombination.


Subject(s)
DNA Copy Number Variations , Genome , Goats/genetics , Animals , Polymorphism, Single Nucleotide
20.
J Anim Sci Biotechnol ; 11: 35, 2020.
Article in English | MEDLINE | ID: mdl-32175082

ABSTRACT

BACKGROUND: In this study, we aimed to investigate the molecular basis of lactation as well as to identify the genetic factors that influence milk yield and composition in goats. To achieve these two goals, we have analyzed how the mRNA profile of the mammary gland changes in seven Murciano-Granadina goats at each of three different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 285 d (T3, dry period) after parturition. Moreover, we have performed a genome-wide association study (GWAS) for seven dairy traits recorded in the 1st lactation of 822 Murciano-Granadina goats. RESULTS: The expression profiles of the mammary gland in the early (T1) and late (T2) lactation were quite similar (42 differentially expressed genes), while strong transcriptomic differences (more than one thousand differentially expressed genes) were observed between the lactating (T1/T2) and non-lactating (T3) mammary glands. A large number of differentially expressed genes were involved in pathways related with the biosynthesis of amino acids, cholesterol, triglycerides and steroids as well as with glycerophospholipid metabolism, adipocytokine signaling, lipid binding, regulation of ion transmembrane transport, calcium ion binding, metalloendopeptidase activity and complement and coagulation cascades. With regard to the second goal of the study, the performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), including three genome-wide significant associations: QTL1 (chromosome 2, 130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry matter percentages. Interestingly, QTL6 shows positional coincidence with the casein genes, which encode 80% of milk proteins. CONCLUSIONS: The abrogation of lactation involves dramatic changes in the expression of genes participating in a broad array of physiological processes such as protein, lipid and carbohydrate metabolism, calcium homeostasis, cell death and tissue remodeling, as well as immunity. We also conclude that genetic variation at the casein genes has a major impact on the milk protein content of Murciano-Granadina goats.

SELECTION OF CITATIONS
SEARCH DETAIL
...