Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37512315

ABSTRACT

This paper utilizes in situ X-ray diffraction (XRD) to investigate the high-temperature oxidation behaviour of CrMnFeCoNi high-entropy alloy (HEA). We found that (1) Mn is the major oxide-forming element in both vacuum and air environments, leading to the formation of non-protective oxides that deplete the bulk alloy of Mn; (2) no oxides like Cr2O3, Fe2O3, or Fe3O4 were observed during the high-temperature oxidation behaviour of CrMnFeCoNi, which contradicts some previous studies on the isothermal oxidation of CrMnFeCoNi HEA. We also analysed and compared the experimental results with thermodynamic calculations by using ThermoCalc version 2022b software following the CALPHAD method. ThermoCalc predicted spinel oxide in a vacuum environment, along with halite oxides observed in experimental results; also, in an atmospheric environment, it predicted only spinel, indicating the need for further investigation into factors to validate the thermodynamic predictions. Our study shows that the in situ HTXRD technique is a powerful tool to accurately identify time-temperature-dependent phase formation/transformation for studying oxidation behaviours and understanding oxidation mechanisms in HEAs.

2.
Sci Rep ; 13(1): 3861, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890207

ABSTRACT

Twin boundaries have been shown to deviate from the twinning planes in hcp metals, and facets have often been observed in twin interfaces. This study presents a twinning disconnection-based model for faceting in single, double and triple twin boundaries in magnesium. Primary twinning disconnections predicted via symmetry arguments are shown to produce commensurate facets in single twin boundaries, which are then transformed into commensurate facets in double twin boundaries via the action of secondary twinning disconnections. In contrast, it is shown that for triple twin boundaries with tension-compression-tension twinning sequence, no commensurate facets can be produced by the action of tertiary twinning disconnections. The effect of facets on the macroscopic orientation of twin interfaces is discussed. Theoretical findings are validated by a transmission electron microscopy study of a hot rolled Mg-1.18wt%Al-1.77wt%Nd alloy. Single and double twins are observed, as well as rare triple twins, and the interface between the matrix and a triple twin is captured for the first time. Facets consistent with theoretical predictions are imaged via high-resolution TEM and macroscopic deviations of the boundaries from the primary twinning planes are measured.

3.
Mater Charact ; 178: None, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345156

ABSTRACT

The synthesis of nanostructured AZ31 powder by cryomilling was studied in this paper. The microstructural evolution during cryomilling, including the changes of particle morphology and internal grain size, was characterized via optical microscopy, SEM, TEM and XRD. Observations during the cryomilling produced four main findings. Firstly, cryomilling can refine the grains of AZ31 particles down to 100 nm after around 1 h milling and the minimum average grain size of about 30 nm was reached when the cryomilling time was extended to 6 h or longer. Secondly, cold welding played a dominant role in the early stage of cryomilling, while fracture took place in the late stage and surpassed cold welding. The former led to a particle size increase while the latter decreased the particle size. The minimum average particle size after 6 h cryomilling was approximately 26 µm. Thirdly, a few particles were agglomerated with other particles and could not be processed by cryomilling due to cold welding. Finally, after cryomilling 6 h and longer times, the hardness reached 162 HV which was much higher than other values reported in AZ31 alloy studies.

4.
Nature ; 590(7845): 262-267, 2021 02.
Article in English | MEDLINE | ID: mdl-33568822

ABSTRACT

Steels with sub-micrometre grain sizes usually possess high toughness and strength, which makes them promising for lightweighting technologies and energy-saving strategies. So far, the industrial fabrication of ultrafine-grained (UFG) alloys, which generally relies on the manipulation of diffusional phase transformation, has been limited to steels with austenite-to-ferrite transformation1-3. Moreover, the limited work hardening and uniform elongation of these UFG steels1,4,5 hinder their widespread application. Here we report the facile mass production of UFG structures in a typical Fe-22Mn-0.6C twinning-induced plasticity steel by minor Cu alloying and manipulation of the recrystallization process through the intragranular nanoprecipitation (within 30 seconds) of a coherent disordered Cu-rich phase. The rapid and copious nanoprecipitation not only prevents the growth of the freshly recrystallized sub-micrometre grains but also enhances the thermal stability of the obtained UFG structure through the Zener pinning mechanism6. Moreover, owing to their full coherency and disordered nature, the precipitates exhibit weak interactions with dislocations under loading. This approach enables the preparation of a fully recrystallized UFG structure with a grain size of 800 ± 400 nanometres without the introduction of detrimental lattice defects such as brittle particles and segregated boundaries. Compared with the steel to which no Cu was added, the yield strength of the UFG structure was doubled to around 710 megapascals, with a uniform ductility of 45 per cent and a tensile strength of around 2,000 megapascals. This grain-refinement concept should be extendable to other alloy systems, and the manufacturing processes can be readily applied to existing industrial production lines.

5.
Sci Rep ; 9(1): 7152, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31073150

ABSTRACT

The entire recrystallisation sequence and associated crystallographic texture evolution of Mg-0.8Zn-0.2Ca (wt.%) alloy was tracked using a quasi-in-situ electron backscatter diffraction (EBSD) method. Characteristic "Rare Earth" (RE) texture was formed, originating mainly from double twins and twinning-related shear bands consisting of compression and double twins. The RE textures appeared during the nucleation stage and were preserved during the relative uniform grain growth period because of solute segregation and concurrent precipitation although the alloying element content was very low. Ca and Zn co-segregated along grain boundaries with no evidence that segregation was preferred along special types of grain boundaries. The interactions between deformation microstructures, concurrent precipitation, solute drag, grain growth and texture evolution are discussed in detail. All the results indicate that Ca performs a similar role to that of RE elements in forming RE texture.

6.
Sci Rep ; 8(1): 7512, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29760456

ABSTRACT

In ß titanium alloys, the ß stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+ß) structure and micrometre scale ß phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected to cold rolling and flash annealing at 820 oC for 2 and 5 mins. The solidification segregation of Mo and W leads to a locally different microstructure after cold rolling (i.e., nanostructured ß phase in the regions rich in Mo and W and plate-like martensite and ß phase in regions relatively poor in Mo and W), which play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this alloy exhibited a superior combination of high yield strength (692 MPa), high tensile strength (1115 MPa), high work hardening rate and large uniform elongation (33.5%). More importantly, the new technique proposed in this work could be potentially applicable to other alloy systems with segregation problems.

7.
Anal Bioanal Chem ; 409(21): 5065-5072, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28664336

ABSTRACT

In this study, we have successfully synthesized a forchlorfenuron (CPPU)-imprinted polymer in dimethyl sulfoxide by molecular imprinting technique. In the molecular imprinting, ß-cyclodextrin was used as the monomer with 1,6-hexamethylene diisocyanate (HMDI) as the cross-linking agent that formed a complex with forchlorfenuron by inclusion interactions. The adsorption equilibrium was attained in approximately 30 min and the maximum binding capacity was 26.79 mg/g, which indicated that the adsorption kinetics was relatively fast. The results of adsorption and selectivity experiments have shown that the imprinted polymer was able to bind forchlorfenuron specifically and reversibly. The specific recognition of the imprinted polymer for forchlorfenuron resulted from the cooperative effects of inclusion interaction and hydrophobic interaction. This imprinted polymer was also used to accurately determine forchlorfenuron residue in real fruit samples. In the standard spiked strawberry sample, the adsorption recoveries for forchlorfenuron were as high as 90.3, 84.5, and 90.8%, respectively. The binding specificity of the imprinted polymer for forchlorfenuron resulted from the imprinting effect. Therefore, as a reusable material possessing high affinity and selectivity, the imprinted polymer is promising in application to detect pesticide residues in fruit samples. In addition, because ß-cyclodextrin is water soluble and can include neutral compounds, this molecularly imprinted polymer can be used to recognize pesticides in aqueous solutions. Graphical abstract Schematic demonstration of molecular imprinting and re-binding of forchlorfenuron.


Subject(s)
Fruit/chemistry , Molecular Imprinting/methods , Phenylurea Compounds/analysis , Plant Growth Regulators/analysis , Polymers/chemistry , Pyridines/analysis , beta-Cyclodextrins/chemistry , Adsorption , Kinetics , Limit of Detection , Microscopy, Electron, Scanning , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL