Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38301281

ABSTRACT

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

2.
Phys Chem Chem Phys ; 22(34): 18902-18910, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32393945

ABSTRACT

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We have developed a method, based on the artificial neural network, trained on ab initio site-specific XANES calculations, that enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic nanoalloys. By validating the neural network-yielded metal-metal coordination numbers based on the XANES analysis by previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at% Pd in Au) PdAu nanoparticles, driven by their gas and temperature treatments.

3.
Nat Commun ; 11(1): 1722, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32238812

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Chem Commun (Camb) ; 56(24): 3528-3531, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32103206

ABSTRACT

The metal complex (Zr(CH3)4(THF)2) has been fully synthesized, characterized and grafted onto partially dehydroxylated silica to give two surface species [([triple bond, length as m-dash]Si-O-)Zr(CH3)3(THF)2] (minor) and [([triple bond, length as m-dash]Si-O-)2Zr(CH3)2(THF)2] (major) which have been characterized by SS NMR, IR, and elemental analysis. These supported pre-catalysts exhibit the best conversion of CO2 to cyclic carbonates, as compared to the previously reported SOMC catalysts.

5.
Nat Commun ; 11(1): 1033, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32098956

ABSTRACT

The reaction pathways on supported catalysts can be tuned by optimizing the catalyst structures, which helps the development of efficient catalysts. Such design is particularly desired for CO2 hydrogenation, which is characterized by complex pathways and multiple products. Here, we report an investigation of supported cobalt, which is known for its hydrocarbon production and ability to turn into a selective catalyst for methanol synthesis in CO2 hydrogenation which exhibits good activity and stability. The crucial technique is to use the silica, acting as a support and ligand, to modify the cobalt species via Co‒O‒SiOn linkages, which favor the reactivity of spectroscopically identified *CH3O intermediates, that more readily undergo hydrogenation to methanol than the C‒O dissociation associated with hydrocarbon formation. Cobalt catalysts in this class offer appealing opportunities for optimizing selectivity in CO2 hydrogenation and producing high-grade methanol. By identifying this function of silica, we provide support for rationally controlling these reaction pathways.

6.
Commun Chem ; 3(1): 46, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-36703362

ABSTRACT

Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of Pd0.04Au0.96 nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures. In turn, there are changes in hydrogenation activity because surface palladium is necessary for H2 dissociation. These Pd0.04Au0.96 nanoparticles in the porous silica remain structurally intact under many cycles of activation and deactivation and are remarkably resistant to sintering, demonstrating that dilute alloy catalysts are highly dynamic systems that can be tuned and maintained in a active state.

8.
J Am Chem Soc ; 141(21): 8482-8488, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31063372

ABSTRACT

Supported rhodium nanoparticles (NPs) are well-known for catalyzing methanation in CO2 hydrogenation. Now we demonstrate that the selectivity in this process can be optimized for CO production by choice of molecular sieve crystals as supports. The NPs are enveloped within the crystals with controlled nanopore environments that allow tuning of the catalytic selectivity to minimize methanation and favor the reverse water-gas shift reaction. Pure silica MFI (S-1)-fixed rhodium NPs exhibited maximized CO selectivity at high CO2 conversions, whereas aluminosilicate MFI zeolite-supported rhodium NPs displayed high methane selectivity under the equivalent conditions. Strong correlations were observed between the nanoporous environment and catalytic selectivity, indicating that S-1 minimizes hydrogen spillover and favors fast desorption of CO to limit deep hydrogenation. Materials in this class appear to offer appealing opportunities for tailoring selective supported catalysts for a variety of reactions.

9.
Chem Sci ; 10(9): 2623-2632, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30996978

ABSTRACT

Single-site Ir(CO)2 complexes bonded to high-surface-area metal oxide supports, SiO2, TiO2, Fe2O3, CeO2, MgO, and La2O3, were synthesized by chemisorption of Ir(CO)2(acac) (acac = acetylacetonate) followed by coating with each of the following ionic liquids (ILs): 1-n-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], 1-n-butyl-3-methylimidazolium acetate, [BMIM][Ac], and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, [CPMIM][DCA]. Extended X-ray absorption fine structure spectroscopy showed that site-isolated iridium was bonded to oxygen atoms of the support. Electron densities on the iridium enveloped by each IL sheath/support combination were characterized by carbonyl infrared spectroscopy of the iridium gem-dicarbonyls and by X-ray absorption near-edge structure data. The electron-donor/acceptor tendencies of both the support and IL determine the activity and selectivity of the catalysts for the hydrogenation of 1,3-butadiene, with electron-rich iridium being selective for partial hydrogenation. The results resolve the effects of the IL and support as ligands; for example, the effect of the IL becomes dominant when the support has a weak electron-donor character. The combined effects of supports and ILs as ligands offer broad opportunities for tuning catalytic properties of supported metal catalysts.

10.
J Am Chem Soc ; 141(9): 4010-4015, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30736668

ABSTRACT

Although essentially molecular noble metal species provide active sites and highly tunable platforms for the design of supported catalysts, the susceptibility of the metals to reduction and aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their application. Here, we demonstrate a new construct to stabilize supported molecular noble-metal catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing environment. The result is demonstrated with an iridium pair-site catalyst incorporating P-bridging calix[4]arene ligands dispersed on siliceous supports, chosen as prototypes because they offer weakly interacting surfaces on which metal aggregation is prone to occur. This catalyst was used for the hydrogenation of ethylene in a flow reactor. Atomic-resolution imaging of the Ir centers and spectra of the catalyst before and after use show that the metals resisted aggregation and deactivation, remaining atomically dispersed and accessible for catalysis. This strategy thus allows the stabilization of the catalysts even when they are weakly anchored to supports.

11.
Faraday Discuss ; 208(0): 9-33, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29901045

ABSTRACT

Molecular metal complexes on supports have drawn wide attention as catalysts offering new properties and opportunities for precise synthesis to make uniform catalytic species that can be understood in depth. Here we highlight advances in research with catalysts that are a step more complex than those incorporating single, isolated metal atoms on supports. These more complex catalysts consist of supported noble metal clusters and supported metal oxide clusters, and our emphasis is placed on some of the simplest and best-defined of these catalysts, made by precise synthesis, usually with organometallic precursors. Characterization of these catalysts by spectroscopic, microscopic, and theoretical methods is leading to rapid progress in fundamental understanding of catalyst structure and function, and to expansion of this class of materials. The simplest supported metal clusters incorporate two metal atoms each-they are pair-site catalysts. These and clusters containing several metal atoms have reactivities determined by the metal nuclearity, the ligands on the metal, and the supports, which themselves are ligands. Metal oxide clusters are also included in the discussion presented here, with Zr6O8 clusters that are nodes in metal-organic frameworks being among those that are understood the best. The surface and catalytic chemistries of these metal oxide clusters are distinct from those of bulk zirconia. A challenge in using any supported cluster catalysts is associated with their possible sintering, and recent research shows how metal nanoparticles can be encapsulated in sheaths with well-defined porous structures-zeolites-that make them highly resistant to sintering.

12.
Nat Commun ; 9(1): 1362, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636468

ABSTRACT

Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

13.
J Colloid Interface Sci ; 405: 10-6, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23777868

ABSTRACT

It was found previously that the Schiff base bonds in poly(allylamine hydrochloride)-g-pyrene (PAH-Py) microcapsules (MCs) are hydrolyzed at pH 2 within 1 h, leading to disassembly of the MCs and protrusion of pyrene aldehyde (Py) nanorods (NRs) on the capsule surface. Herein, we found a new way to modulate the protrusion of NRs by addition of 1-pyrenesulfonic acid sodium salt (PySO3Na). Along with the increase in PySO3Na to Py molar ratio in the MCs solution, the protrusion of NRs was progressively blocked and even inhibited at a ratio of 2.3, and at this condition, the microcapsules were stable under pH 2 for 24 h. After the composite microcapsules with excess PySO3Na were washed with a pH 10 solution and then incubated in a pH 2 solution, the NRs could be protruded from the MCs again. The fluorescence peak position of the PAH-Py/PySO3Na MCs gradually red-shifted with a decrease in pH value, and a sharp transition occurred at p H3.6, demonstrating the formation of pyrene excimers between the PySO3Na small molecules and the pendant Py groups on the PAH chain. The formed excimers take the role of blocking the self-assembly of cleaved Py molecules instead of inhibiting the hydrolysis of the Schiff base, whereas the MCs were stabilized by the charge interaction between PySO3Na and PAH backbone and the hydrophobic interaction between the pyrene rings.


Subject(s)
Capsules , Nanotubes/chemistry , Pyrenes/chemistry , Hydrogen-Ion Concentration , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Molecular Conformation , Nanotechnology , Polyamines/chemistry , Spectroscopy, Fourier Transform Infrared , Static Electricity
14.
Chem Commun (Camb) ; 49(15): 1503-5, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23325316

ABSTRACT

A pyridinyl-functionalized tetraphenylethene (Py-TPE) was synthesized and it demonstrated colorimetric and ratiometric fluorescent responses to trivalent metal cations (M(3+), M = Cr, Fe, Al) over a variety of mono- and divalent metal cations.

15.
Macromol Rapid Commun ; 33(18): 1584-9, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22764123

ABSTRACT

Tetraphenylethylene (TPE)-substituted poly(allylamine hydrochloride) (PAH-g-TPE) is synthesized by a Schiff base reaction between PAH and TPE-CHO. The PAH-g-TPE forms micelles in water at pH 6, which are further transformed into pure TPE-CHO nanoparticles (NPs) with a diameter of ≈300 nm after incubation in a solution of low pH value. In contrast, only amorphous precipitates are obtained when TPE-CHO methanol solution is incubated in water. The aggregation-induced emission feature of the TPE molecule is completely retained in the TPE NPs, which can be internalized into cells and show blue fluorescence. Formation mechanism of the TPE NPs is proposed by taking into account the guidance effect of linear and charged PAH molecules, and the propeller-stacking manner between the TPE-CHO molecules.


Subject(s)
Ethylenes/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Particle Size , Polymers/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...