Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Cancer Lett ; 593: 216952, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750719

ABSTRACT

Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear protein that attaches negatively charged poly (ADP-ribose) (PAR) to itself and other target proteins. While its function in DNA damage repair is well established, its role in target chromatin recognition and regulation of gene expression remains to be better understood. This study showed that PARP1 interacts with SET1/MLL complexes by binding directly to WDR5. Notably, although PARP1 does not modulate WDR5 PARylation or the global level of H3K4 methylation, it exerts locus-specific effects on WDR5 binding and H3K4 methylation. Interestingly, PARP1 and WDR5 show extensive co-localization on chromatin, with WDR5 facilitating the recognition and expression of target genes regulated by PARP1. Furthermore, we demonstrated that inhibition of the WDR5 Win site impedes the interaction between PARP1 and WDR5, thereby inhibiting PARP1 from binding to target genes. Finally, the combined inhibition of the WDR5 Win site and PARP shows a profound inhibitory effect on the proliferation of cancer cells. These findings illuminate intricate mechanisms underlying chromatin recognition, gene transcription, and tumorigenesis, shedding light on previously unrecognized roles of PARP1 and WDR5 in these processes.

3.
J Med Educ Curric Dev ; 11: 23821205241255224, 2024.
Article in English | MEDLINE | ID: mdl-38813087

ABSTRACT

OBJECTIVE: To better construct teaching resources, enhance real-time interaction and feedback between teachers and students in and out of class, and improve the teaching quality of parasitology, our team set up a WeChat public account I love Parasitology. METHODS: The data sources were mainly from original pictures and multimedia materials of different parasites collected and produced by our team, as well as related materials collected from traditional publications and digital media. With the instant interactive platform, course schedules and corresponding teaching contents were sent by push notifications, case-based learning was carried out, and 2-way communication between students and teachers was achieved. Teaching effectiveness was assessed using a self-evaluation questionnaire. RESULTS: A WeChat public account suitable for our daily teaching of parasitology was established. The second recursion and implementation of the learning resources allowed students to conduct in-depth reading and get unrestricted access to high-quality resources through the public account. In addition, all contents were in digital forms and made the original resources reborn, which would make up for our current and future shortage of physical teaching specimens. Moreover, the results from the questionnaire indicated that all these actions encouraged students to master theoretical knowledge, improved their abilities of case analysis and communication, and increased their knowledge of academic progress. CONCLUSION: Our WeChat public account can provide excellent learning materials for students and is a good supplement to the routine education of human parasitology.

4.
Inflammation ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554240

ABSTRACT

Schistosomiasis is the second most debilitating neglected tropical disease in the world. Liver egg granuloma and fibrosis are the main damage of schistosomiasis. In this study, the role of allograft inflammatory factor-1 (AIF-1) in liver pathology and its regulation in immune responses were investigated in a transgenic mouse infected with Schistosoma japonicum. We found that AIF-1 overexpression reduced worm burden and decreased egg granuloma sizes and serum alanine aminotransferase levels, along with inhibited hepatic collagen deposition and serum hydroxyproline levels during S. japonicum infection. Moreover, AIF-1 overexpression resulted in an increased ratio of Th1/Th2, increased levels of IFN-γ and T-bet, and lower levels of GATA-3 in the spleen, accompanied by increased M1 percentages, decreased M2 percentages, and thus a higher ratio of M1/M2 in the peritoneal cavity and liver. AIF-1 induced CD68 and iNOS mRNA expression and protein levels of cytoplasmic p-P38 and nuclear NF-κB, along with enhanced levels of TNF-α and TGF-ß in macrophages in vitro. Moreover, the hepatic pathology had a negative correlation with Th1/Th2 and M1/M2 ratios in the infected mice. The findings reveal that the beneficial role of AIF-1 in alleviating hepatic damage is related to restoring type I/II immune balance in S. japonicum infection.

5.
Nat Commun ; 15(1): 2627, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521787

ABSTRACT

IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1ß inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.


Subject(s)
Immunoglobulin G4-Related Disease , Ubiquitin Thiolesterase , Animals , Humans , Mice , B-Lymphocytes/metabolism , Fibrosis , Inflammation , Leukocytes, Mononuclear/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
6.
Viruses ; 16(1)2024 01 09.
Article in English | MEDLINE | ID: mdl-38257800

ABSTRACT

SARS-CoV-2 caused the COVID-19 pandemic. COVID-19 may elevate the risk of cognitive impairment and even cause dementia in infected individuals; it may accelerate cognitive decline in elderly patients with dementia, possibly in Alzheimer's disease (AD) patients. However, the mechanisms underlying the interplay between AD and COVID-19 are still unclear. To investigate the underlying mechanisms and associations between AD progression and SARS-CoV-2 infection, we conducted a series of bioinformatics research into SARS-CoV-2-infected cells, COVID-19 patients, AD patients, and SARS-CoV-2-infected AD patients. We identified the common differentially expressed genes (DEGs) in COVID-19 patients, AD patients, and SARS-CoV-2-infected cells, and these DEGs are enriched in certain pathways, such as immune responses and cytokine storms. We constructed the gene interaction network with the signaling transduction module in the center and identified IRF7, STAT1, STAT2, and OAS1 as the hub genes. We also checked the correlations between several key transcription factors and the SARS-CoV-2 and COVID-19 pathway-related genes. We observed that ACE2 expression is positively correlated with IRF7 expression in AD and coronavirus infections, and interestingly, IRF7 is significantly upregulated in response to different RNA virus infections. Further snRNA-seq analysis indicates that NRGN neurons or endothelial cells may be responsible for the increase in ACE2 and IRF7 expression after SARS-CoV-2 infection. The positive correlation between ACE2 and IRF7 expressions is confirmed in the hippocampal formation (HF) of SARS-CoV-2-infected AD patients. Our findings could contribute to the investigation of the molecular mechanisms underlying the interplay between AD and COVID-19 and to the development of effective therapeutic strategies for AD patients with COVID-19.


Subject(s)
Alzheimer Disease , COVID-19 , Aged , Humans , COVID-19/genetics , SARS-CoV-2 , Alzheimer Disease/genetics , Angiotensin-Converting Enzyme 2 , Endothelial Cells , Pandemics , Gene Expression Profiling
7.
J Med Virol ; 95(12): e29270, 2023 12.
Article in English | MEDLINE | ID: mdl-38047459

ABSTRACT

Coronavirus disease 2019 (COVID-19) pathogenesis is influenced by reactive oxygen species (ROS). Nevertheless, the precise mechanisms implicated remain poorly understood. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main driver for this condition, is a structural protein indispensable for viral replication and assembly, and its role in ROS production has not been reported. This study shows that SARS-CoV-2 N protein expression enhances mitochondrial ROS level. Bulk RNA-sequencing suggests of aberrant redox state of the electron transport chain. Accordingly, this protein hinders ATP production but simultaneously augments the activity of complexes I and III, and most mitochondrially encoded complex I and III proteins are upregulated by it. Mechanistically, N protein of SARS-CoV-2 shows significant mitochondrial localization. It interacts with mitochondrial transcription components and stabilizes them. Moreover, it also impairs the activity of antioxidant enzymes with or without detectable interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Reactive Oxygen Species , Nucleocapsid Proteins/chemistry , Virus Replication
8.
MedComm (2020) ; 4(5): e379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37789963

ABSTRACT

To increase the imaging resolution and detection capability, the field strength of static magnetic fields (SMFs) in magnetic resonance imaging (MRI) has significantly increased in the past few decades. However, research on the side effects of high magnetic field is still very inadequate and the effects of SMF above 1 T (Tesla) on B cells have never been reported. Here, we show that 33.0 T ultra-high SMF exposure causes immunosuppression and disrupts B cell differentiation and signaling. 33.0 T SMF treatment resulted in disturbance of B cell peripheral differentiation and antibody secretion and reduced the expression of IgM on B cell membrane, and these might be intensity dependent. In addition, mice exposed to 33.0 T SMF showed inhibition on early activation of B cells, including B cell spreading, B cell receptor clustering and signalosome recruitment, and depression of both positive and negative molecules in the proximal BCR signaling, as well as impaired actin reorganization. Sequencing and gene enrichment analysis showed that SMF stimulation also affects splenic B cells' transcriptome and metabolic pathways. Therefore, in the clinical application of MRI, we should consider the influence of SMF on the immune system and choose the optimal intensity for treatment.

9.
iScience ; 26(8): 107341, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37539041

ABSTRACT

Metabolism plays a crucial role in B cell differentiation and function. GSDMA3 is related to mitochondrial metabolism and is involved in immune responses. Here, we used Gsdma3 KO mice to examine the effect of GSDMA3 on B cells. The results demonstrated that GSDMA3 deficiency reprogrammed B cell metabolism, evidenced by upregulating PI3K-Akt-mTOR signaling, along with elevated ROS reproduction and reduced maximal oxygen consumption rate in mitochondria. Moreover, the BCR signaling in the KO B cells was impaired. The reduced BCR signaling was associated with decreased BCR clustering, caused by inhibited activation of WASP. However, GSDMA3 deficiency had no effects on B cell development and functions in humoral immunity, which might be associated with the compensation of upregulated GSDMA2 expression and the fine balance between PI3K signaling and BCR signals interaction. Our observations reveal a previously unknown influence of GSDMA3 on B cells under physiological and immunized states.

10.
Sensors (Basel) ; 23(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37420544

ABSTRACT

Trajectory data has gained increasing attention in the transportation industry due to its capability of providing valuable spatiotemporal information. Recent advancements have introduced a new type of multi-model all-traffic trajectory data which provides high-frequency trajectories of various road users, including vehicles, pedestrians, and bicyclists. This data offers enhanced accuracy, higher frequency, and full detection penetration, making it ideal for microscopic traffic analysis. In this study, we compare and evaluate trajectory data collected from two prevalent roadside sensors: LiDAR and camera (computer vision). The comparison is conducted at the same intersection and over the same time period. Our findings reveal that current LiDAR-based trajectory data exhibits a broader detection range and is less affected by poor lighting conditions compared to computer vision-based data. Both sensors demonstrate acceptable performance for volume counting during daylight hours, but LiDAR-based data maintains more consistent accuracy at night, particularly in pedestrian counting. Furthermore, our analysis demonstrates that, after applying smoothing techniques, both LiDAR and computer vision systems accurately measure vehicle speeds, while vision-based data show greater fluctuations in pedestrian speed measurements. Overall, this study provides insights into the advantages and disadvantages of LiDAR-based and computer vision-based trajectory data, serving as a valuable reference for researchers, engineers, and other trajectory data users in selecting the most appropriate sensor for their specific needs.


Subject(s)
Accidents, Traffic , Pedestrians , Humans , Accidents, Traffic/prevention & control , Transportation , Attention , Engineering
11.
Front Immunol ; 14: 1169601, 2023.
Article in English | MEDLINE | ID: mdl-37275865

ABSTRACT

Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , T-Lymphocytes, Regulatory , T-Lymphocytes, Helper-Inducer/pathology
12.
Front Immunol ; 14: 1146628, 2023.
Article in English | MEDLINE | ID: mdl-37283744

ABSTRACT

Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.


Subject(s)
Cytokines , Signal Transduction , Regulatory-Associated Protein of mTOR/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Cytokines/metabolism
13.
Int J Med Sci ; 20(4): 557-565, 2023.
Article in English | MEDLINE | ID: mdl-37057207

ABSTRACT

Background and objectives: Hepatic stellate cell (HSC) activation is the cardinal factor due to the accumulation of extracellular matrix proteins during the development of liver fibrosis. The aim of the present study was to find new targets for developing drugs to treat liver fibrosis, by screening the key genes involved in the activation of hepatic stellate cells. Methods: Differentially expressed genes were identified through TCGA database. RT-PCR, immunohistochemistry (IHC) assay, western blot, and ELISA were performed to evaluate the expression levels of FAT10 and fibrotic molecules. In vitro experiments were conducted to investigate the signaling pathways and biological functions of FAT10 in LX-2 cell lines. Results: In the present study, expression profiles obtained from the Gene Expression Omnibus (GEO) were used to explore the different genes expression between HSCs treated with or without carbon tetrachloride (CCl4). Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) was selected for further investigations. In animal model of carbon tetrachloride-induced liver fibrosis, the expression of FAT10 on activated HSCs is upregulated. In vitro, silencing FAT10 reduced TGF-ß1-induced ECM activation and accumulation in LX-2 cells, and also suppressed the inflammatory response of LX-2 cells. Further Transwell results suggested that knockdown of FAT10 could inhibit TGF-ß1-induced LX-2 cell migration and invasion. Mechanistically, FAT10 promotes its fibrotic activity through regulating sirtuin 1 (SIRT1), with a concomitant activation of ECM. Conclusions: These findings indicated an unexpected role of FAT10 in liver fibrosis development, suggesting that silencing FAT10 might represent a new strategy for the treatment of fibrotic liver diseases.


Subject(s)
Hepatic Stellate Cells , Sirtuin 1 , Ubiquitins , Animals , Humans , Carbon Tetrachloride , Fibrosis , Hepatic Stellate Cells/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/drug therapy , Sirtuin 1/genetics , Sirtuin 1/metabolism , Transforming Growth Factor beta1/metabolism , Ubiquitins/genetics
14.
Emerg Microbes Infect ; 12(1): 2195019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36946172

ABSTRACT

The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organs dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Immunity, Innate , Dendritic Cells
15.
Behav Sci (Basel) ; 13(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36661629

ABSTRACT

The sustainable development of infrastructure construction projects heavily depends on favorable cooperation of all parties and ethical code of conduct, while Un-ethical pro-organizational behavior (UPB) may undermine the mutual efforts and cause serious consequences. UPB has aroused wide interest of researchers, but what may trigger construction employees to engage in UPB at team-level has not been elucidated completely. With information asymmetry and huge uncertainty, the behaviors of employees in temporary project teams are marked by environmental and personal characters. The study discusses the influences of collective moral judgement focus on self (CMJS) and Machiavellianism on UPB. Through a moderated mediation analysis conducted on a set of survey data from Chinese construction projects, the empirical results of the two-level hierarchical linear model indicate that CMJS positively impacts UPB directly, and meanwhile Machiavellianism acts as a partial mediator in the relationship between CMJS and UPB. The findings also reveal that performance-avoidance goal orientation (PAGO) and motivation to learn (MTL) moderate and strengthen the relationship between Machiavellianism and UPB. The study offers practical suggestions for both project managers and policymakers of construction projects.

16.
Dis Model Mech ; 16(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-35855640

ABSTRACT

When pathological hypertrophy progresses to heart failure (HF), the prognosis is often very poor. Therefore, it is crucial to find new and effective intervention targets. Here, myocardium-specific Trim44 knockout rats were generated using CRISPR-Cas9 technology. Cardiac phenotypic observations revealed that Trim44 knockout affected cardiac morphology at baseline. Rats with Trim44 deficiency exhibited resistance to cardiac pathological changes in response to stimulation via isoproterenol (ISO) treatment, including improvement of cardiac remodeling and dysfunction by morphological and functional observations, reduced myocardial fibrosis and reduced expression of molecular markers of cardiac stress. Furthermore, signal transduction validation associated with growth and hypertrophy development in vivo and in vitro demonstrated that Trim44 deficiency inhibited the activation of signaling pathways involved in myocardial hypertrophy, especially response to pathological stress. In conclusion, the present study indicates that Trim44 knockout attenuates ISO-induced pathological cardiac remodeling through blocking the AKT/mTOR/GSK3ß/P70S6K signaling pathway. This is the first study to demonstrate the function and importance of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy and HF.


Subject(s)
Proto-Oncogene Proteins c-akt , Ventricular Remodeling , Animals , Cardiomegaly/genetics , Isoproterenol/metabolism , Isoproterenol/pharmacology , Isoproterenol/therapeutic use , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , TOR Serine-Threonine Kinases/metabolism , Ventricular Remodeling/physiology
17.
Emerg Microbes Infect ; 12(1): e2164219, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36583642

ABSTRACT

ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/therapeutic use , Nucleocapsid Proteins , Immunity, Innate , Vaccine Development
18.
Front Cell Dev Biol ; 10: 991840, 2022.
Article in English | MEDLINE | ID: mdl-36211467

ABSTRACT

B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.

19.
Pathogens ; 11(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36297220

ABSTRACT

Vaccines are one of the most successful medical inventions to enable the eradication or control of common and fatal diseases. Environmental exposure of hosts, including helminth infections, plays an important role in immune responses to vaccines. Given that helminth infections are among the most common infectious diseases in the world, evaluating vaccine efficiency in helminth-infected populations may provide critical information for selecting optimal vaccination programs. Here, we reviewed the effects of helminth infections on vaccination and its underlying immunological mechanisms, based on findings from human studies and animal models. Moreover, the potential influence of helminth infections on SARS-CoV-2 vaccine was also discussed. Based on these findings, there is an urgent need for anthelmintic treatments to eliminate helminth suppressive impacts on vaccination effectiveness during implementing mass vaccination in parasite endemic areas.

20.
Front Cell Infect Microbiol ; 12: 1028899, 2022.
Article in English | MEDLINE | ID: mdl-36304936

ABSTRACT

Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-ß1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.


Subject(s)
Colitis , Schistosoma japonicum , Mice , Animals , Trinitrobenzenesulfonic Acid/toxicity , Th17 Cells , T-Lymphocytes, Regulatory , Colitis/chemically induced , Colitis/prevention & control , Lipid Metabolism , Glycolipids
SELECTION OF CITATIONS
SEARCH DETAIL
...