Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Phytomedicine ; 126: 155444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367423

ABSTRACT

BACKGROUND: Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE: This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS: The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS: Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-ß1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION: This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.


Subject(s)
Alkaloids , Berberine Alkaloids , Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Alkaloids/pharmacology , Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Drugs, Chinese Herbal/pharmacology
2.
Food Res Int ; 180: 114068, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395544

ABSTRACT

Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.


Subject(s)
Antioxidants , Gallic Acid , Antioxidants/pharmacology , Gallic Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Biological Availability , Nanoparticle Drug Delivery System , Neoplasm Proteins/metabolism , Drug Interactions , Membrane Transport Proteins/metabolism , Food Industry
3.
Biomaterials ; 305: 122466, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184960

ABSTRACT

Inflammation is associated with a series of diseases like cancer, cardiovascular disease and infection, and phosphorylation/dephosphorylation modification of proteins are important in inflammation regulation. Here we designed and synthesized a novel Brazilin-Ce nanoparticle (BX-Ce NPs) using Brazilin, which has been used for anti-inflammation in cardiovascular diseases but with narrow therapeutic window, and Cerium (IV), a lanthanide which has the general activity in catalyzing the hydrolysis of phosphoester bonds, to conferring de/anti-phosphorylation of IKKß. We found that BX-Ce NPs specifically bound to Asn225 and Lys428 of IKKß and inhibited its phosphorylation at Ser181, contributing to appreciably anti-inflammatory effect in cellulo (IC50 = 2.5 µM). In vivo mouse models of myocardial infarction and sepsis also showed that the BX-Ce NPs significantly ameliorated myocardial injury and improved survival in mice with experimental sepsis through downregulating phosphorylation of IKKß. These findings provided insights for developing metal nanoparticles for guided ion interfere therapy, particularly synergistically target de/anti-phosphorylation as promising therapeutic agents for inflammation and related diseases.


Subject(s)
Benzopyrans , Cerium , Metal Nanoparticles , Nanoparticles , Sepsis , Mice , Animals , Phosphorylation , I-kappa B Kinase/metabolism , I-kappa B Kinase/therapeutic use , Inflammation/drug therapy , Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Cerium/chemistry
4.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5195-5204, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114109

ABSTRACT

The 3-succinate-30-stearyl glycyrrhetinic acid(18-GA-Suc) was inserted into glycyrrhetinic acid(GA)-tanshinone Ⅱ_A(TSN)-salvianolic acid B(Sal B) liposome(GTS-lip) to prepare liver targeting compound liposome(Suc-GTS-lip) mediated by GA receptors. Next, pharmacokinetics and tissue distribution of Suc-GTS-lip and GTS-lip were compared by UPLC, and in vivo imaging tracking of Suc-GTS-lip was conducted. The authors investigated the effect of Suc-GTS-lip on the proliferation inhibition of hepatic stellate cells(HSC) and explored their molecular mechanism of improving liver fibrosis. Pharmacokinetic results showed that the AUC_(Sal B) decreased from(636.06±27.73) µg·h·mL~(-1) to(550.39±12.34) µg·h·mL~(-1), and the AUC_(TSN) decreased from(1.08±0.72) µg·h·mL~(-1) to(0.65±0.04) µg·h·mL~(-1), but the AUC_(GA) increased from(43.64±3.10) µg·h·mL~(-1) to(96.21±3.75) µg·h·mL~(-1). The results of tissue distribution showed that the AUC_(Sal B) and C_(max) of Sal B in the liver of the Suc-GTS-lip group were 10.21 and 4.44 times those of the GTS-lip group, respectively. The liver targeting efficiency of Sal B, TSN, and GA in the Suc-GTS-lip group was 40.66%, 3.06%, and 22.08%, respectively. In vivo imaging studies showed that the modified liposomes tended to accumulate in the liver. MTT results showed that Suc-GTS-lip could significantly inhibit the proliferation of HSC, and RT-PCR results showed that the expression of MMP-1 was significantly increased in all groups, but that of TIMP-1 and TIMP-2 was significantly decreased. The mRNA expressions of collagen-I and collagen-Ⅲ were significantly decreased in all groups. The experimental results showed that Suc-GTS-lip had liver targeting, and it could inhibit the proliferation of HSC and induce their apoptosis, which provided the experimental basis for the targeted treatment of liver fibrosis by Suc-GTS-lip.


Subject(s)
Glycyrrhetinic Acid , Liposomes , Humans , Hepatic Stellate Cells , Glycyrrhetinic Acid/pharmacology , Liver , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Collagen/pharmacology
5.
Heliyon ; 9(11): e22016, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027676

ABSTRACT

Atorvastatin (Atv) is widely used to lower cholesterol levels and treat hyperlipidemia in clinical application. Nomilin (Nom) is a kind of limonoids, which is found and isolated from the citrus herbs of Rutaceae family, which are widely used as patent medicines, functional foods, and nutritional supplements in many countries. In previous studies, Nom has the effect of anti-obesity and curing other metabolic diseases. Nevertheless, in recent years, the drug-drug interaction (DDI) caused by the administration of drugs with synergistic effects have raised worldwide concerns. To investigate the DDI of Nom and Atv in vivo, the pharmacokinetic studies were performed with using C57BL/6 mice. The plasma concentrations of Nom and Atv were measured after oral administration of different drug combinations by a simple and sensitive UHPLC-MS/MS method. The experimental mice were randomly divided into five groups, including control group, model group, administered Nom individually group, administered Atv individually group and co-administered of Nom and Atv group. The lipid levels including total cholesterol (TC), triglycerides (TG), high density lipoproteins-cholesterol (HDL-C), low density lipoproteins-cholesterol (LDL-C) were measured for pharmacodynamic study. The hepatic microsomal Cytochrome P450 (CYP1A2, CYP2E1 and CYP3A11) activities were probed using cocktail assay. The gene and protein expressions of CYP3A11 were detected via qPCR and Western blot method. The results shown that the area under the plasma concentration-time curve (AUC) of Atv in administered Atv individually group was 69.30 ± 15.45 ng/mL × h, while that of combined Nom with Atv group was 42.37 ± 10.15 ng/mL × h (p<0.05). The degree of reduction in lipid levels of mice treated with co-administration of Atv and Nom was less than that of mice treated with Atv alone. In addition, Nom could cause an increased hepatic microsomal CYP3A11 activity significantly, and induce the gene levels and protein expressions of CYP3A11 elevated in mice livers. In conclusion, Nom could up-regulate CYP3A11 activity, thereby impacting on the pharmacokinetic profile and pharmacodynamic effect of Atv. The findings provide more insight for the use risk of these two drugs to treat hyperlipidemia diseases.

6.
Nat Commun ; 14(1): 3368, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291126

ABSTRACT

Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Male , Humans , Animals , Mice , Longevity/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Pregnane X Receptor , Forkhead Transcription Factors , Mammals/metabolism
7.
Front Pharmacol ; 14: 1113583, 2023.
Article in English | MEDLINE | ID: mdl-37124205

ABSTRACT

Sinapis Semen (SS), the dried mature seed of Sinapis alba L. and Brassica juncea (L.) Czern. et Coss., is one of the traditional Chinese medicinal materials with a wide range of pharmacological effects being used for asthma, cough and many other ailments. SS is also widely used in food agriculture, medicine and other industries in North America and South Asia. More recently, the research on SS has gradually intensified and increased. However, there is no systematic review of SS. In this review, through literature exploration and analysis, the research advance on phytochemistry, pharmacology, toxicity, analytical methods and pharmacokinetics of SS was aggregated initially. Total 144 compounds have been isolated and identified from SS. Among them, glucosinolates and their hydrolysates and volatile oils are the main active ingredients and important chemical classification markers. SS has a wide range of pharmacological effects, especially in cough suppressing, asthma calming, anti-inflammatory, neuroprotective, cardiovascular protective, inhibiting androgenic effects, anti-tumor, and skin permeation promoting effects. Sinapine and sinapic acid are the main active ingredients of SS for its medicinal effects. However, SS has a strong skin irritation, presumably related to the time of application, the method of processing, and original medicinal plants. This review will provide useful data for the follow-up research and safe and reasonable clinical application of SS.

8.
J Pharm Biomed Anal ; 223: 115140, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36356406

ABSTRACT

Polyacetylenes, lobetyol, lobetyolin and lobetyolinin, are responsible for antitumor, antioxidant, anti-inflammatory, immunomodulatory activities of Codonopsis Radix. However, their metabolic pathways are still unknown. The study was purposed to investigate the metabolism of three polyacetylenes in vitro and in vivo by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Moreover, a rapid, sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantitative and semi-quantitative determination of lobetyol and its 12 metabolites to investigate the metabolic stability and metabolic phenotypes. A total of 47, 30 and 34 metabolites of lobetyol, lobetyolin and lobetyolinin were found in all samples. These metabolites are produced through extensive pathways, mainly involving oxidation, glucuronidation and glutathione conjugation. Lobetyol showed good metabolic stability in liver microsomes. The results of both recombinant human CYP enzymes and chemical inhibition experiments confirmed that CYP2C19, 1A1, 2C9, and 1A2 are the major isozymes mediating lobetyol metabolism.


Subject(s)
Codonopsis , Humans , Codonopsis/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polyacetylene Polymer , Metabolic Networks and Pathways
9.
J Sep Sci ; 46(2): e2200602, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36377517

ABSTRACT

Cordycepin from Cordyceps possesses excellent pharmacological properties, including anti-inflammation and anti-tumor effects, therefore representing a potential alternative medicine. However, doubts about the pharmacokinetic results of cordycepin had been raised in the previous study due to its rapid deamination. The organic solvent methanol was immediately added to terminate the degradation of cordycepin in anticoagulated blood samples and enable the accurate evaluation of pharmacokinetics in vivo. A sensitive and selective ultra-high-performance liquid chromatography coupled with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry method was developed and validated to simultaneously determine cordycepin and its deamination metabolite 3'-deoxyinosine using 2-chloroadenosine as an internal standard in rat whole blood. The calibration curves of cordycepin and 3'-deoxyinosine showed excellent linearity within the concentration range of 1.05-10 000.00 ng/ml with acceptable accuracy, precision, selectivity, recovery, matrix effect, and stability. This method was successfully applied to the pharmacokinetic study of cordycepin and its metabolite in rat blood. The effect of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride on the pharmacokinetics of cordycepin was investigated. In summary, the reliable pharmacokinetic parameters of cordycepin and its deamination metabolite 3'-deoxyinosine in rat blood were successfully elucidated. Erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride considerably prolonged the half-life of cordycepin in vivo.


Subject(s)
Chromatography, High Pressure Liquid , Rats , Animals , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Mass Spectrometry/methods
10.
J Anal Methods Chem ; 2022: 5269545, 2022.
Article in English | MEDLINE | ID: mdl-36124165

ABSTRACT

Asari Radix et Rhizoma (AR) is a widely-used Chinese herbal medicine containing multiple active lignans and rare nephrotoxic components-aristolochic acids derivatives (AAs). However, the current quality control method carried out by Chinese Pharmacopoeia has defects in trace AAs detection and insufficient marker ingredients, which is unable to comprehensively evaluate the efficacy and safety of AR. To improve the quality control method of AR, a rapid, sensitive, and reliable chromatographic analytic method based on ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS) was established for the simultaneous analysis of multiple AAs and lignans in AR samples. Positive electrospray ionization mode with multiple reaction monitoring (MRM) was applied for the detection of the eight analytes. The method showed available linearity (R 2 ≥ 0.991), the limit of quantification (2-5 ng/mL), precision (RSD <8.12%), and accuracy (89.78-112.16%). A total of 6 AAs and 2 lignans were quantified for their content in 15 AR samples. The content of AA-IVa, AA-VIIa, and aristololactam I (AL-I) was much higher than the AA-I controlled by pharmacopoeia. Considering the potential toxicity of AAs, AA-IVa, AA-VIIa, and AL-I should also be controlled in AR. A considerable amount of active sesamin was detected in AR, suggesting that it could be added as a quality marker for the quality control of AR. The newly developed analytical method could be applied for the fast evaluation of toxic AA's content and quality during quality control of AR or preparations containing AR.

11.
J Ethnopharmacol ; 297: 115569, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35868550

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Asari Radix et Rhizoma (ARR), including 3 major plants of genus Asarum Linn, A. heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag., A. sieboldii Miq. f. sieboldii and A. sieboldii Miq f. seoulense (Nakai) C. Y. Cheng et C. S. Yang, is one of the most important traditional herbal medicine in Asia with tremendous pharmacological activities. For a long time, researchers focus attention on studing asarinin and essential oils, the indicating ingredients of ARR, but paid less attention to another characteristic component, alkamides. The role of alkamides in the major efficacy of ARR medication remains to be elucidated. AIM OF THE STUDY: This study aims to investigate the contribution of alkamides in the efficacy of ARR according to the evaluation of antinociceptive and anti-inflammatory effects and in vivo pharmacokinetics processes. MATERIALS AND METHODS: For pharmacodynamic study, the analgesic and anti-inflammatory effects of alkamides-enriched fraction (ARRA) were comparatively evaluated by writhing test, hot plate test, and ear swelling test in mice after oral administration. For pharmacokinetic study, an UHPLC-MS/MS method was developed for the simultaneous determination of N-isobutyl-2E,4E,8Z,10Z/E-dodecatetraenamide (DDA) and other 6 major characteristic ingredients of ARR in rat plasma. The analytical method was validated and successfully applied to the pharmacokinetic study of ARR extract and DDA. RESULTS: Pharmacodynamic study show that the ARR and ARRA can significantly inhibit the writhing times of mice caused by acetic acid administration, increase the pain threshold of thermal stimulation, and inhibit xylene treated ear swelling degree by reduce PGE2 and TNF-α levels in the inflamed tissue. For pharmacokinetic study, the pharmacokinetic parameters of Vd/F and CL/F after intravenous administration in rats of DDA are 63.94 ± 32.12 L/kg and 0.33 ± 0.06 L/min/kg, respectively. The plasma drug concentration declined with the T1/2 value of 2.25 ± 0.96 h, and the MRT0-∞ was 2.23 ± 1.02 h. The absolute bioavailability of DDA after oral administration was calculated as 10.73%. DDA, methyleugenol, and asarinin have relatively high AUC0-∞ values when the ethanol and water extract of ARR is orally administered. CONCLUSIONS: ARRA is a kind of active ingredients with potential analgesic and anti-inflammatory effects that played a significant role in the major efficacy of ARR. DDA, the major compound of ARRA, has a high level of exposure in vivo, which could be is suitable for the pharmacokinetic marker or new quality marker of ARR.


Subject(s)
Asarum , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Drugs, Chinese Herbal , Mice , Rats , Tandem Mass Spectrometry
12.
Chin J Nat Med ; 20(3): 194-201, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35369963

ABSTRACT

Harmaline and harmine are ß-carboline alkaloids with effective pharmacological effects. Harmaline can be transformed into harmine after oral administration. However, enzymes involved in the metabolic pathway remain unclear. In this study, harmaline was incubated with rat liver microsomes (RLM), rat brain microsomes (RBM), blood, plasma, broken blood cells, and heme peroxidases including horseradish peroxidase (HRP), lactoperoxidase (LPO), and myeloperoxidase (MPO). The production of harmine was determined by a validated UPLC-ESI-MS/MS method. Results showed that heme peroxidases catalyzed the oxidative dehydrogenation of harmaline. All the reactions were in accordance with the Hill equation. The reaction was inhibited by ascorbic acid and excess H2O2. The transformation of harmaline to harmine was confirmed after incubation with blood, plasma, and broken blood cells, rather than RLM and RBM. Harmaline was incubated with blood, plasma, and broken cells liquid for 3 h, and the formation of harmine became stable. Results indicated an integrated metabolic pathway of harmaline, which will lay foundation for the oxidation reaction of dihydro-ß-carboline. Moreover, the metabolic stability of harmaline in blood should not be ignored when the pharmacokinetics study of harmaline is carried out.


Subject(s)
Harmaline , Harmine , Animals , Harmaline/metabolism , Harmine/metabolism , Heme , Hydrogen Peroxide , Rats , Tandem Mass Spectrometry
13.
J Pharm Biomed Anal ; 207: 114431, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34710728

ABSTRACT

Sinapine thiocyanate (ST) is an index component and pharmacological active component of Semen Sinapis and Semen Raphani, and it is widely used to relieving cough and asthma. This study aimed to obtain the metabolic and pharmacokinetic characterization of ST. The metabolic profiles of ST were obtained from rat plasma, urine, and feces via ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q/TOF-MS). Thirteen metabolites were structurally identified, and the proposed metabolic pathways of ST included deamination, demethylation, hydrogenation, dehydration, and extensive conjugation, including glucuronidation and sulfonation. ST was selected as the plasma marker for the pharmacokinetic study. A simple and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitation of ST in rat plasma. The linear range of ST was 0.1-500 ng/mL (R2 = 0.9976), and the lowest limit of quantification was 0.1 ng/mL. The intra-precision and inter-precision of the assay were 1.31-5.12% and 2.72-7.66%, and the accuracy (RE%) ranged from - 4.88% to 3.82% and - 3.47% to 6.18%. The extraction recovery, matrix effect, and stability of ST were within acceptable limits. The established method was validated and successfully applied to the pharmacokinetic study of ST. For pharmacokinetic experiments, the male Sprague-Dawley rats were administrated with ST solution intravenously (2 mg/kg) or orally (100 mg/kg). The oral absolute bioavailability of ST was calculated as 1.84%, and the apparent volume of distribution of intravenous and intragastric administrations were 107.51 ± 21.16 L/kg and 78.60 ± 14.44 L/kg, respectively. The maximum plasma concentration was 47.82 ± 18.77 nM, and the time to maximum peak was 88.74 ± 20.08 min for the intragastric dosing group. According to the pharmacokinetic and metabolic profiling results, metabolites with high abundance of ST in bio-fluids would be the next object in tissue distribution and pharmacodynamic study.


Subject(s)
Tandem Mass Spectrometry , Thiocyanates , Administration, Oral , Animals , Choline/analogs & derivatives , Chromatography, High Pressure Liquid , Male , Rats , Rats, Sprague-Dawley
14.
Anal Bioanal Chem ; 413(23): 5871-5884, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331552

ABSTRACT

Herbal medicines have historically been practiced in combinatorial way, which achieves therapeutic efficacy by integrative effects of multi-components. Thus, the accurate and precise measurement of multi bioactive components in matrices is inalienable to understanding the metabolism and disposition of herbal medicines. In this study, aiming to provide a strategy that improves analyte coverage, evaluation of six protocols employing sample pretreatment methods- protein precipitation (PPT), liquid-liquid extraction (LLE), sugaring-out-assisted liquid-liquid extraction (SULLE), and salting-out-assisted liquid-liquid extraction (SALLE)- was performed by LC-MS/MS using rat plasma and a mixture of alkaloid (evodiamine, rutaecarpine, dehydroevodiamine), terpenoid (limonin, rutaevin, obacunone), and flavonoid (liquiritin, isoliquiritin, liquiritigenin) standards isolated from Tetradium ruticarpum and Glycyrrhiza uralensis. These protocols were as follows: (1) PPT with methanol, (2) PPT with acetonitrile, (3) LLE with methyl tertiary-butyl ether-dichloromethane, (4) LLE with ethyl acetate-n-butanol, (5) SALLE with ammonium acetate, (6) SULLE with glucose. The results suggested that SALLE produced broader analyte coverage with satisfactory reproducibility, acceptable recovery, and low matrix interference. Then, sample preparation procedure of SALLE, chromatographic conditions, and mass spectrometric parameters were optimized, followed by method validation, showing that good sensitivity (LLOQ ≤ 1 ng mL-1), linearity (r ≥ 0.9933), precision (RSD ≤ 14.45%), accuracy (89.54~110.87%), and stability could be achieved. Next, the developed method was applied successfully to determine the pharmacokinetic behavior of the nine compounds in rat plasma after intragastric administration with an extract from Tetradium ruticarpum and Glycyrrhiza uralensis (Wuzhuyu-Gancao pair). Based on an extensive review and experiments, a sample preparation procedure that matches with LC-MS/MS technique and can get wider analyte coverage was outlined. The developed SALLE method is rapid, reliable, and suitable for bioanalysis of analytes with diverse polarity, which was expected to be a promising strategy for the pharmacokinetic studies of herbal medicines. Graphical abstract.


Subject(s)
Alkaloids/blood , Chromatography, Liquid/methods , Evodia/chemistry , Flavonoids/blood , Glycyrrhiza uralensis/chemistry , Herbal Medicine , Liquid-Liquid Extraction/methods , Plant Extracts/administration & dosage , Tandem Mass Spectrometry/methods , Terpenes/blood , Administration, Oral , Animals , Female , Limit of Detection , Male , Rats , Rats, Sprague-Dawley , Reference Standards
15.
Article in English | MEDLINE | ID: mdl-34147874

ABSTRACT

Shuganzhi Tablets (SGZT) is developed on the basis of a clinical empirical formula as a hospital preparation for the treatment of fatty liver. In this study, a rapid and highly sensitive LC-MS/MS method was established and validated for simultaneous determination of ginsenoside Re, ginsenoside Rg1, notoginsenoside R1, naringin, specnuezhenide, emodin, polydatin, hesperidin and saikosaponin A in rat plasma. Multiple reaction monitoring mode played an important role in simultaneous quantitative analysis of multiple components. The analytes were separated by the action of an ACQUITY UPLC® BEH C18 column (2.1 × 50 mm, 1.7 µm) in five minutes. The validated LC-MS/MS method was successfully applied to the pharmacokinetic analysis of hesperidin, emodin, polydatin and naringin of SGZT in rat plasma after administration. A UHPLC system couple with a quadrupole combined with time of flight mass spectrometer was used for qualitatively analyzing of the composition of SGZT and its metabolites in serum, urine, bile and feces of rats. The results showed that a total of 65 components were detected in rat biological samples, including 10 prototype components and 55 metabolites. It was speculated that the ingredients of SGZT experienced mainly the following reactions in rats: phase I reaction such as hydrolysis, oxidation, hydroxylation, carboxylation and dehydroxylation and phase Ⅱ reaction such as glucuronidation and sulfation. These results provide useful information for the further study of its active ingredients.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal , Tandem Mass Spectrometry/methods , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Ginsenosides/analysis , Ginsenosides/chemistry , Ginsenosides/pharmacokinetics , Linear Models , Male , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacokinetics , Rats , Rats, Wistar , Reproducibility of Results , Saponins/analysis , Saponins/chemistry , Saponins/pharmacokinetics , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods , Tablets
16.
Biomed Chromatogr ; 35(8): e5108, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33650162

ABSTRACT

A rapid ultra-fast liquid chromatography tandem mass spectrometry method was developed and validated to determine ginsenosides Rk1 and Rg5, a pair of isomers, in rat plasma, which was successfully applied to their pharmacokinetic studies. Two ginsenosides were given to male Sprague-Dawley rats via intragastrical and intravenous routes, respectively, and the impact of double bond position on the pharmacokinetic features of the two ginsenosides was elucidated in rats. Ginsenoside Rg3 was used as internal standard and ethyl acetate was applied to extract analytes and internal standard. Chromatographic separation was carried out on a reverse-phase UPLC HSS T3 column (100 × 2.1 mm, 1.8 µm). The flow rate was set to 0.4 ml/min. The fragmentation transition was m/z 765.4 → m/z 101.1 for two ginsenosides. The mobile phases were composed of 0.1% formic acid aqueous solution and acetonitrile. The linear range was 2-1,000 ng/ml for the two ginsenosides. Intra- and inter-day precisions were <11.67%, and accuracy fluctuated from -7.44 to 6.78%. The extraction recovery, matrix effect and stability were within acceptable levels. After treatment with ginsenosides Rk1 and Rg5, some differences were found in their pharmacokinetic profiles in rats. The maximum plasma drug concentration and the area under the plasma drug concentration-time curve of ginsenoside Rg5 were about 5 times bigger than those of ginsenoside Rk1 after oral administration, and 3 times higher after intravenous administration. The oral bioavailabilities of ginsenosides Rk1 and Rg5 were 0.67 and 0.97%, respectively. The results indicated that ∆20(22) -ginsenosides showed better pharmacokinetic features than ∆20(21) -ginsenosides with the same glycosylation.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ginsenosides , Tandem Mass Spectrometry/methods , Animals , Ginsenosides/blood , Ginsenosides/chemistry , Ginsenosides/pharmacokinetics , Limit of Detection , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results
17.
Environ Toxicol Pharmacol ; 85: 103628, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652109

ABSTRACT

Dictamnine (DIC), a typical furan-quinoline alkaloid, has a wide range of pharmacological and toxicological effects, such as anti-bacterial, antifungal, anti-cancer, and hepatoxicity. But the molecular mechanism of DIC-induced hepatoxicity in mice remains unclear. This study aimed to clarify the biotransformation patterns of DIC in vitro/in vivo and the relative molecular mechanism of DIC-induced hepatoxicity in mice. All metabolites of DIC were identified by comparing the blank and drug-containing urine, feces, plasma, and liver samples. The structure of epoxide intermediate derived from DIC was confirmed by trapping assay. Oxidative stress injury and inflammation have been confirmed to be involved in the toxicological process of DIC-induced hepatoxicity in mice by detecting the relative biochemical indexes. The results will help to develop a deeper understanding about the biotransformation patterns of DIC, structure of the epoxide intermediate, and the molecular mechanism of DIC-induced hepatoxicity in mice.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Quinolines/pharmacokinetics , Animals , Biotransformation , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/urine , Cytokines/blood , Feces/chemistry , Glutathione Peroxidase/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Malondialdehyde/metabolism , Mice, Inbred ICR , Microsomes, Liver/metabolism , Quinolines/blood , Quinolines/urine
18.
Biomed Chromatogr ; 35(6): e5077, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33475178

ABSTRACT

Stem-leaf saponins (SLSs), the total saponins from aerial part of P. notoginseng, are by-products of notoginseng, a famous traditional Chinese medicine. SLSs have been used as a health functional food in China, but its mild effects limited clinical applications in diseases. Inspired by steaming of notoginseng to enhance its pharmacological activity, a steaming protocol was developed to treat SLSs. SLSs were steamed at 100, 120, and 140°C for 1, 2, 3, and 4 h, respectively. The ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS and ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were applied to analyze the dynamic changes in chemical compositions. The anti-acetylcholinesterase activity of steamed SLS were assessed in vitro by directly determining the metabolic product of acetylcholine/choline. The components of SLSs were significantly changed by steaming. A total of 117 saponins and aglycones were characterized, and 35 of them were newly generated. The anti-acetylcholinesterase activity of steamed SLSs gradually increased with the extension of steamed time and the increase of steamed temperature and reached the maximum after 140°C for 3 h. Furthermore, ginsenosides Rk1 and Rg5, the main components of steamed SLSs, showed dose-dependent anti-acetylcholinesterase activities with half maximal inhibitory concentration (IC50 ) values of 26.88 ± 0.53 µm and 22.41 ± 1.31 µm that were only 1.8- and 1.5-fold higher than that of donepezil with IC50 values of 14.93 ± 4.17 µM, respectively.


Subject(s)
Cholinesterase Inhibitors , Ginsenosides , Panax notoginseng/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Steam
19.
Biomed Chromatogr ; 35(3): e5001, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33063881

ABSTRACT

Lusianthridin, a bioactive component isolated from Dendrobium venustum, has been demonstrated to have many biological properties such as antioxidant and anticancer activities. However, the metabolic profiles remain unknown. This study was carried out to investigate the metabolic profiles of lusianthridin in liver microsomes. Lusianthridin was co-incubated with liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and UDP-glucuronic acid or glutathione at 37°C for 1 h. The incubation samples were analyzed by liquid chromatography combined with electrospray ionization high-resolution mass spectrometry. The data were acquired and processed. The structures of the metabolites were proposed by comparing their accurate mass and MS2 spectra with those of the parent compound. A total of 15 metabolites were detected in vitro, including two phase I and 13 phase II metabolites. The phase I metabolic pathways were oxidation, demethylation and dehydrogenation. The phase II metabolic pathways referred to glucuronidation and glutathione conjugation. The present study provides an overview pertaining to the metabolic profiles of lusianthridin in vitro, which is indispensable for understanding the efficacy and safety of lusianthridin, as well as the herbal medicine D. venustum.


Subject(s)
Chromatography, Liquid/methods , Metabolome/drug effects , Microsomes, Liver/metabolism , Phenanthrenes/analysis , Phenanthrenes/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Dendrobium , Glutathione/metabolism , NADP/metabolism , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Rats
20.
J Pharm Biomed Anal ; 195: 113836, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33358433

ABSTRACT

Lusianthridin was reported to possess many biological properties such as anti-oxidant and anti-cancer activities. However, its metabolic profiles and pharmacokinetics in vivo remain unknown. This study was carried out to investigate the metabolic profiles and pharmacokinetics of lusianthridin in rats. The metabolic profiles were obtained by an ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). A total of eighteen metabolites involved three phase I metabolites and fifteen phase II metabolites were detected and identified. The major metabolic pathways of lusianthridin were demethylation, oxidation, sulfation, glucuronidation and glutathione conjugation. In addition, a simple and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for determination of lusianthridin in rat plasma. After extracted by protein precipitation, lusianthridin was quantitated in positive ion mode. The method was linear over the range of 0.5-500 ng/mL (r ≥ 0.995) with the LLOQ of 0.5 ng/mL. The intra- and inter- precision and accuracy, extraction recovery, matrix effect and stability were within the acceptable limits. The validated method was applied to the pre-clinical pharmacokinetic study of lusianthridin in rats. After oral administration, lusianthridin was quickly absorbed into plasma and reached the max concentration of 236.22 ng/mL at 22.00 min. The elimination half life of lusianthridin from plasma was approximately 83.05-104.47 min and the oral absolute bioavailability was calculated as 30.93 %.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Chromatography, Liquid , Phenanthrenes , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...