Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Image Process ; 31: 623-635, 2022.
Article in English | MEDLINE | ID: mdl-34910634

ABSTRACT

This paper addresses semi-supervised semantic segmentation by exploiting a small set of images with pixel-level annotations (strong supervisions) and a large set of images with only image-level annotations (weak supervisions). Most existing approaches aim to generate accurate pixel-level labels from weak supervisions. However, we observe that those generated labels still inevitably contain noisy labels. Motivated by this observation, we present a novel perspective and formulate this task as a problem of learning with pixel-level label noise. Existing noisy label methods, nevertheless, mainly aim at image-level tasks, which can not capture the relationship between neighboring labels in one image. Therefore, we propose a graph-based label noise detection and correction framework to deal with pixel-level noisy labels. In particular, for the generated pixel-level noisy labels from weak supervisions by Class Activation Map (CAM), we train a clean segmentation model with strong supervisions to detect the clean labels from these noisy labels according to the cross-entropy loss. Then, we adopt a superpixel-based graph to represent the relations of spatial adjacency and semantic similarity between pixels in one image. Finally we correct the noisy labels using a Graph Attention Network (GAT) supervised by detected clean labels. We comprehensively conduct experiments on PASCAL VOC 2012, PASCAL-Context, MS-COCO and Cityscapes datasets. The experimental results show that our proposed semi-supervised method achieves the state-of-the-art performances and even outperforms the fully-supervised models on PASCAL VOC 2012 and MS-COCO datasets in some cases.

2.
IEEE Trans Image Process ; 30: 2476-2487, 2021.
Article in English | MEDLINE | ID: mdl-33497335

ABSTRACT

This paper focuses on the thorax disease classification problem in chest X-ray (CXR) images. Different from the generic image classification task, a robust and stable CXR image analysis system should consider the unique characteristics of CXR images. Particularly, it should be able to: 1) automatically focus on the disease-critical regions, which usually are of small sizes; 2) adaptively capture the intrinsic relationships among different disease features and utilize them to boost the multi-label disease recognition rates jointly. In this paper, we propose to learn discriminative features with a two-branch architecture, named ConsultNet, to achieve those two purposes simultaneously. ConsultNet consists of two components. First, an information bottleneck constrained feature selector extracts critical disease-specific features according to the feature importance. Second, a spatial-and-channel encoding based feature integrator enhances the latent semantic dependencies in the feature space. ConsultNet fuses these discriminative features to improve the performance of thorax disease classification in CXRs. Experiments conducted on the ChestX-ray14 and CheXpert dataset demonstrate the effectiveness of the proposed method.


Subject(s)
Deep Learning , Lung Diseases/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Humans , Lung Diseases/classification
3.
Article in English | MEDLINE | ID: mdl-32813653

ABSTRACT

The goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical colocalization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pretrained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on finegrained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly.

SELECTION OF CITATIONS
SEARCH DETAIL