Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649660

ABSTRACT

Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 µW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of ß-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.

2.
Stem Cell Res Ther ; 15(1): 55, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414053

ABSTRACT

BACKGROUND: Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS: NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS: In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-ß-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION: Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Neural Stem Cells , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Cellular Senescence , Mice, Transgenic , Neural Stem Cells/metabolism , Peptides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
3.
Redox Biol ; 69: 102972, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056310

ABSTRACT

Oxidative stress (OS) is regarded as the dominant theory for aging. While compelling correlative data have been generated to support the OS theory, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and aging has not been firmly established. Superoxide dismutase 1 (SOD1) is a primary antioxidant in all cells. It is, however, susceptible to oxidation due to OS and gains toxic properties to cells. This study investigates the role of oxidized SOD1 derived from amyotrophic lateral sclerosis (ALS) linked SOD1 mutations in cell senescence and aging. Herein, we have shown that the cell line NSC34 expressing the G93A mutation of human SOD1 (hSOD1G93A) entered premature senescence as evidenced by a decreased number of the 5-ethynyl-2'-deoxyuridine (EdU)-positive cells. There was an upregulation of cellular senescence markers compared to cells expressing the wild-type human SOD1 (hSOD1WT). Transgenic mice carrying the hSOD1G93A gene showed aging phenotypes at an early age (135 days) with high levels of P53 and P16 but low levels of SIRT1 and SIRT6 compared with age-matched hSOD1WT transgenic mice. Notably, the levels of oxidized SOD1 were significantly elevated in both the senescent NSC34 cells and 135-day hSOD1G93A mice. Selective removal of oxidized SOD1 by our CT4-directed autophagy significantly decelerated aging, indicating that oxidized SOD1 is a causal factor of aging. Intriguingly, mitochondria malfunctioned in both senescent NSC34 cells and middle-aged hSODG93A transgenic mice. They exhibited increased production of mitochondrial-derived vesicles (MDVs) in response to mild OS in mutant humanSOD1 (hSOD1) transgenic mice at a younger age; however, the mitochondrial response gradually declined with aging. In conclusion, our data show that oxidized SOD1 derived from ALS-linked SOD1 mutants is a causal factor for cellular senescence and aging. Compromised mitochondrial responsiveness to OS may serve as an indicator of premature aging.


Subject(s)
Amyotrophic Lateral Sclerosis , Sirtuins , Animals , Humans , Infant , Mice , Middle Aged , Aging/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Mice, Transgenic , Motor Neurons , Mutation , Sirtuins/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
4.
iScience ; 26(12): 108518, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089576

ABSTRACT

Myelin sheath in the central nervous system (CNS) is essential for efficient action potential conduction. Microglia, the macrophages in the CNS, are suggested to regulate myelin development. However, the specific involvement of microglia in initial myelination is yet to be elucidated. Here, first, by culturing neural stem cells, we demonstrated that myelin sheath formation only occurred in the presence of a microglia-conditioned medium. Furthermore, the absence of C1q, a microglia-derived factor, resulted in myelination failure in the neural stem cell culture. Additionally, adding native human C1q protein was sufficient to induce myelination in vitro. Finally, in the C1q conditional knockout mouse model (C1qaFL/FL: Cx3cr1CreER), C1q deficiency prior to the onset of myelination led to reduced myelin thickness and elevated g-ratio during initial myelination. This study uncovers the pivotal role of microglia-derived C1q in developmental myelination and could potentially pave the way for new therapeutic strategies for treating demyelinating diseases.

5.
Cell Mol Life Sci ; 80(10): 304, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752364

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS: Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS: Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS: The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Animals , Mice , Amyotrophic Lateral Sclerosis/genetics , Superoxide Dismutase-1/genetics , Disease Models, Animal , Motor Neurons
6.
Front Cell Dev Biol ; 11: 1220672, 2023.
Article in English | MEDLINE | ID: mdl-37691828

ABSTRACT

The myosin superfamily is a group of molecular motors. Autoimmune diseases are characterized by dysregulation or deficiency of the immune tolerance mechanism, resulting in an immune response to the human body itself. The link between myosin and autoimmune diseases is much more complex than scientists had hoped. Myosin itself immunization can induce experimental autoimmune diseases of animals, and myosins were abnormally expressed in a number of autoimmune diseases. Additionally, myosin takes part in the pathological process of multiple sclerosis, Alzheimer's disease, Parkinson's disease, autoimmune myocarditis, myositis, hemopathy, inclusion body diseases, etc. However, research on myosin and its involvement in the occurrence and development of diseases is still in its infancy, and the underlying pathological mechanisms are not well understood. We can reasonably predict that myosin might play a role in new treatments of autoimmune diseases.

7.
Ageing Res Rev ; 88: 101955, 2023 07.
Article in English | MEDLINE | ID: mdl-37196864

ABSTRACT

Aging is a complex process that features a functional decline in many organelles. Although mitochondrial dysfunction is suggested as one of the determining factors of aging, the role of mitochondrial quality control (MQC) in aging is still poorly understood. A growing body of evidence points out that reactive oxygen species (ROS) stimulates mitochondrial dynamic changes and accelerates the accumulation of oxidized by-products through mitochondrial proteases and mitochondrial unfolded protein response (UPRmt). Mitochondrial-derived vesicles (MDVs) are the frontline of MQC to dispose of oxidized derivatives. Besides, mitophagy helps remove partially damaged mitochondria to ensure that mitochondria are healthy and functional. Although abundant interventions on MQC have been explored, over-activation or inhibition of any type of MQC may even accelerate abnormal energy metabolism and mitochondrial dysfunction-induced senescence. This review summarizes mechanisms essential for maintaining mitochondrial homeostasis and emphasizes that imbalanced MQC may accelerate cellular senescence and aging. Thus, appropriate interventions on MQC may delay the aging process and extend lifespan.


Subject(s)
Aging , Cellular Senescence , Humans , Aging/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Longevity
8.
ASN Neuro ; 15: 17590914231163039, 2023.
Article in English | MEDLINE | ID: mdl-36974372

ABSTRACT

Myelination contributes not only to the rapid nerve conduction but also to axonal insulation and protection. In the central nervous system (CNS), the initial myelination features a multistep process where oligodendrocyte precursor cells undergo proliferation and migration before differentiating into mature oligodendrocytes. Mature oligodendrocytes then extend processes and wrap around axons to form the multilayered myelin sheath. These steps are tightly regulated by various cellular and molecular mechanisms, such as transcription factors (Olig family, Sox family), growth factors (PDGF, BDNF, FGF-2, IGF), chemokines/cytokines (TGF-ß, IL-1ß, TNFα, IL-6, IFN-γ), hormones (T3), axonal signals (PSA-NCAM, L1-CAM, LINGO-1, neural activity), and intracellular signaling pathways (Wnt/ß-catenin, PI3 K/AKT/mTOR, ERK/MAPK). However, the fundamental mechanisms for initial myelination are yet to be fully elucidated. Identifying pivotal mechanisms for myelination onset, development, and repair will become the focus of future studies. This review focuses on the current understanding of how CNS myelination is initiated and also the regulatory mechanisms underlying the process.


Subject(s)
Central Nervous System , Myelin Sheath , Myelin Sheath/metabolism , Axons/metabolism , Oligodendroglia/metabolism , Signal Transduction
9.
Brain Res Bull ; 195: 99-108, 2023 04.
Article in English | MEDLINE | ID: mdl-36805464

ABSTRACT

Preconditioning with inhalative carbon monoxide (CO) at low concentrations provides protection against hypoxic and ischemic insults in the brain and heart. The present study aims to test a hypothesis that activation of mitochondrial-derived vesicles (MDVs) is a mechanism underlying the protective effect of CO preconditioning. Here we show that CO preconditioning induced mild oxidative stress and activated massive production of MDVs. Short exposure to a low concentration of carbon monoxide-releasing molecule 2 (CORM-2), a donor of carbon monoxide, prevented oligodendrocyte precursor cells (OPCs) from subsequent death induced by high doses of CO, and protected Chinese hamster ovary (CHO) cells against oxygen-glucose deprivation (OGD)-induced cell death. Furthermore, inhibition of lysosomal activity prevented degradation of MDVs, abolished MDV-mediated mitochondrial quality control, and diminished the protective effect of CO preconditioning. Altogether, our data provide direct evidence suggesting that MDV-mediated mitochondrial quality control may have a novel role in CO preconditioning.


Subject(s)
Carbon Monoxide , Mitochondria , Animals , Cricetinae , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , CHO Cells , Cricetulus , Mitochondria/metabolism , Oxidative Stress
10.
Biomolecules ; 12(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36551300

ABSTRACT

Neurodegeneration can benefit from ischemic preconditioning, a natural adaptive reaction to sublethal noxious stimuli. Although there is growing interest in advancing preconditioning to preserve brain function, preconditioning is not yet considered readily achievable in clinical settings. One of the most challenging issues is that there is no fine line between preconditioning stimuli and lethal stimuli. Here, we show deleterious effect of preconditioning on oligodendrocyte precursor cells (OPCs). We identified Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a mitochondrial BH3-only protein specifically involved in OPCs loss after preconditioning. Repeated ischemia stabilized BNIP3 and increased the vulnerability of OPCs to subsequent ischemic events. BNIP3 became mitochondrial-bound and was concurrent with the dysfunction of monocarboxylate transporter 1 (MCT1). Inhibition of BNIP3 by RNAi or necrostatin-1 (Nec-1) and knocking out of BNIP3 almost completely prevented OPCs loss and preserved white matter integrity. Together, our results suggest that the unfavorable effect of BNIP3 on OPCs should be noted for safe development of ischemic tolerance. BNIP3 inhibition appears to be a complementary approach to improve the efficacy of preconditioning for ischemic stroke.


Subject(s)
Ischemic Preconditioning , White Matter , Oligodendroglia/metabolism , Mitochondria/metabolism
11.
Dose Response ; 20(3): 15593258221112959, 2022.
Article in English | MEDLINE | ID: mdl-35958275

ABSTRACT

Background: Borojó (Borojoa patinoi Cuatrec) fruit has recently been shown to have a variety of health benefit, but the mechanisms have been little studied. The aim of this study was to investigate the effect of 4,8-dicarboxyl-8,9-iridoid-1-glycoside (388) on proliferation and differentiation of embryonic neural stem cells (NSCs). Methods: NSCs were treated with 388 and stem cell differentiation was determined by western blotting and immunofluorescence staining. The role of MeCP2 in 388-mediated embryonic NSCs differentiation was examined. Results: The results showed that in the presence of mitogen when NSCs proliferated and maintained their multipotency, treatment with 388 did not affect the viability of NSCs. Following mitogen withdrawal to initiate NSC differentiation, treatment with 388 at the doses of 10 and 50 µg/mL significantly increased neural differentiation in both cortex and spinal cord-derived culture. 388 also significantly up-regulated MeCP2 expression. The expression of the neuronal and oligodendrocytic markers was enhanced after addition of 388 in the differentiation culture. However, knockdown of MeCP2 results in inhibition of NSC differentiation, and the pro-differentiation effect of 388 was mostly abolished. Conclusions: This study confirmed that 388 stimulates differentiation of NSCs and identifies its mechanism of action by upregulating MeCP2.

12.
Nutr Neurosci ; 25(7): 1534-1547, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33487123

ABSTRACT

BACKGROUND: Ketogenic diet (KD) has been identified as a potential therapy to enhance recovery after traumatic brain injury (TBI). Diffuse axonal injury (DAI) is a common type of traumatic brain injury that is characterized by delayed axonal disconnection. Previous studies showed that demyelination resulting from oligodendrocyte damage contributes to axonal degeneration in DAI. AIM: The present study tests a hypothesis that ketone bodies from the ketogenic diet confers protection for myelin and attenuates degeneration of demyelinated axon in DAI. METHODS: A modified Marmarou's model of DAI was induced in adult rats. The DAI rats were fed with KD and analyzed with western blot, transmission electron microscope, ELISA test and immunohistochemistry. Meanwhile, a co-culture of primary oligodendrocytes and neurons was treated with ketone body ß-hydroxybutryate (ßHB) to test for its effects on the myelin-axon unit. RESULTS: Here we report that rats fed with KD showed an increased fatty acid metabolism and ketonemia. This dietary intervention significantly reduced demyelination and attenuated axonal damage in rats following DAI, likely through inhibition of DAI-induced excessive mitochondrial fission and promoting mitochondrial fusion. In an in vitro model of myelination, the ketone body ßHB increased myelination significantly and reduced axonal degeneration induced by glucose deprivation (GD). ßHB robustly increased cell viability, inhibited GD-induced collapse of mitochondrial membrane potential and attenuated death of oligodendrocytes. CONCLUSION: Ketone bodies protect myelin-forming oligodendrocytes and reduce axonal damage. Ketogenic diet maybe a promising therapy for DAI.


Subject(s)
Brain Injuries, Traumatic , Demyelinating Diseases , Diet, Ketogenic , Diffuse Axonal Injury , Animals , Axons/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/prevention & control , Diffuse Axonal Injury/metabolism , Disease Models, Animal , Ketone Bodies , Ketones , Myelin Sheath , Rats
13.
J Neurochem ; 156(6): 929-942, 2021 03.
Article in English | MEDLINE | ID: mdl-32112403

ABSTRACT

Necrostatin-1 (Nec-1) has previously been shown to protect neurons from death in traumatic and ischemic brain injuries. This study tests the hypothesis that Nec-1 protects neural cells against traumatic and ischemic brain injuries through inhibition of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3). We have used biochemical and morphological techniques to determine the inhibition of Nec-1 on BNIP3-induced cell death and to identify its mechanism of action in in vivo and in vitro models of neurodegeneration. Here we show that Nec-1 significantly increased neuronal viability following prolonged exposure to hypoxia in vitro, and attenuated myelin damage and neuronal death in traumatic brain injury and cerebral ischemia in Sprague-Dawley rats. Nec-1 alleviated traumatic brain injury-induced up-regulation of BNIP3 in mature oligodendrocytes. In isolated mitochondria, Nec-1 prevented BNIP3 from integrating into mitochondria by modifying its binding sites on the mitochondria. Consequently, Nec-1 robustly inhibited BNIP3-induced collapse of mitochondrial membrane potential and reduced the opening probability of mitochondrial permeability transition pores. Nec-1 also preserved mitochondrial ultrastructure and suppressed BNIP3-induced nuclear translocation of apoptosis-inducing factor. In conclusion, Nec-1 protects neurons and oligodendrocytes against traumatic and ischemic brain injuries by targeting the BNIP3-induced cell death pathway, and is a novel inhibitor for BNIP3. Cover Image for this issue: https://doi.org/10.1111/jnc.15056.


Subject(s)
Imidazoles/pharmacology , Indoles/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Neuroprotective Agents/pharmacology , Animals , Apoptosis Inducing Factor/metabolism , Binding Sites/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cell Death , Infarction, Middle Cerebral Artery/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/prevention & control , Permeability/drug effects , Rats , Rats, Sprague-Dawley
14.
Front Psychiatry ; 11: 815, 2020.
Article in English | MEDLINE | ID: mdl-32903698

ABSTRACT

Delayed neurologic sequelae (DNS) are recurrent-transient neuropsychiatric consequences of carbon monoxide (CO) intoxication. Pathologically DNS features damages to the brain white matter. Here we test a hypothesis that direct cytotoxicity of CO to oligodendrocytes plays a role in the development of DNS. In an in vitro model of CO poisoning with the carbon monoxide releasing molecule-2 (CORM-2) as a CO donor, we show that CORM-2 at concentrations higher than 200 µM significantly inhibited viability and caused significant death of PC12 cells. Similar minimum toxicity concentration was observed on primary brain cells including neurons, astrocytes, and microglia. Interestingly, oligodendrocytes showed cytotoxicity to CORM-2 at a much lower concentration (100 µM). We further found that CORM-2 at 100 µM inhibited proteolipid protein (PLP) production and reduced myelin coverage on axons in an in vitro model of myelination. Our results show that direct cytotoxicity is a mechanism of CO poisoning and DNS may result from a high susceptibility of oligodendrocytes to CO poisoning.

15.
ACS Chem Neurosci ; 11(17): 2717-2727, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32667776

ABSTRACT

Among the brain cells, oligodendrocyte progenitor cells (OPCs) are the most vulnerable in response to hypoxic and ischemic insults, of which the mechanism remains unknown. Brain cells are known to import or export lactate via differentially expressed monocarboxylate transporters (MCTs) to maintain energy metabolism and pH homeostasis. The present study aims to determine the role of MCT1 in the high vulnerability of OPCs. Here we show that a mild ischemic condition equivalent to ischemic preconditioning caused detectable loss of OPCs. MCT1, which is primarily expressed in oligodendrocyte lineage cells including OPCs, was up-regulated immediately under oxygen-glucose deprivation (OGD) conditions. However, persistent hypoxia, but not hypoglycemia, inhibited the function of MCT1, leading to an intracellular lactate accumulation and acidosis in OPCs. Neurons, which express primarily MCT2, were able to export lactate and maintain an intracellular pH homeostasis under similar conditions. The results support that compromised lactate efflux resulting from hypoxia-induced dysfunction of MCT1 contributes to the high vulnerability of OPCs.


Subject(s)
Oligodendrocyte Precursor Cells , Symporters , Lactic Acid , Monocarboxylic Acid Transporters , Oligodendroglia , Stress, Physiological
16.
Biochem Biophys Res Commun ; 518(2): 259-265, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31421834

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a severe spinal deformity that often occurs during puberty. The occurrence of AIS is suggested to be related to abnormal development of cartilage. Our previous study found increased serum ghrelin levels in AIS patients that may linked to the development of AIS. However, whether ghrelin affects cartilage in AIS patients is unclear. We used quantitative real-time PCR (qRT-PCR) and immunohistochemistry to detect the expression of cartilage-specific genes and the ghrelin receptor, growth hormone secretagogue receptor (GHSR). The mRNA and protein levels of collagen II (COLII), SOX9, AGGRECAN (ACAN) and GHSR were higher in AIS patients than in controls. In addition, the protein levels of GHSR downstream signaling pathway members p-STAT3 (Ser727), and p-ERK1/2 were increased. Furthermore, we treated chondrocytes from AIS patients with 100 nM ghrelin, the cell proliferation assay and Western blotting showed that ghrelin promotes chondrocyte proliferation and enhances COLII, SOX9, ACAN, p-ERK1/2 and p-STAT3 expression, respectively. Interestingly, all these observed alterations were abolished by ghrelin + [D-Lys3]-GHRP-6 (a ghrelin receptor inhibitor) treatment. And after U0126 (an inhibitor of ERK1/2 phosphorylation) treatment, ERK1/2 and STAT3 (Ser727) phosphorylation was simultaneously suppressed indicating that ERK1/2 is an upstream pathway protein of STAT3 (Ser727). In conclusion, ghrelin plays an important role in upregulating cartilage-specific genes on AIS primary chondrocytes by activating ERK/STAT3 signaling pathway.


Subject(s)
Chondrocytes/drug effects , Ghrelin/pharmacology , MAP Kinase Signaling System/drug effects , STAT3 Transcription Factor/metabolism , Scoliosis/drug therapy , Up-Regulation/drug effects , Up-Regulation/genetics , Adolescent , Aggrecans/genetics , Aggrecans/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Child , Chondrocytes/metabolism , Chondrocytes/pathology , Collagen Type II/genetics , Collagen Type II/metabolism , Humans , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Scoliosis/metabolism , Scoliosis/pathology
17.
J Transl Med ; 17(1): 64, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819183

ABSTRACT

BACKGROUND: Osteopenia have been well documented in adolescent idiopathic scoliosis (AIS). Adiponectin has been shown to be inversely proportional to body mass index and to affect bone metabolism. However, the circulating levels of adiponectin and the relationship between adiponectin and low bone mass in AIS remain unclear. METHODS: A total of 563 AIS and 281 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Plasma adiponectin levels were determined by enzyme-linked immunosorbent assay (ELISA) in the AIS and control groups. An improved multiplex ligation detection reaction was performed to study on single nucleotide polymorphism. Facet joints were collected and used to measure the microstructure, the expression of RANKL, OPG, osteoblast-related genes, inflammatory factors, adiponectin and its receptors by qPCR, western blotting and immunohistochemistry. Furthermore, primary cells were extracted from facet joints to observe the reaction after adiponectin stimulation. RESULTS: Compared with the controls, lower body mass index and a marked increase in circulating adiponectin were observed in AIS osteopenia (17.09 ± 1.09 kg/m2 and 21.63 ± 10.30 mg/L). A significant difference in the presence of rs7639352was detected in the AIS osteopenia, AIS normal bone mass and control groups. The T allele showed a significant higher proportion in AIS osteopenia than AIS normal bone mass and control groups (41.75% vs 31.3% vs 25.7%, p < 0.05). micro-CT demonstrated that the AIS convex side had a significant lower bone volume than concave side. RNA and protein analyses showed that in cancellous bone, higher RANKL/OPG and adipoR1 levels and lower runx2 levels were observed, and in cartilage, higher adipoR1 and IL6 levels were observed in AIS. Furthermore, convex side had higher RANKL/OPG, IL6 and adipoR1 than concave side. Compared with normal primary cells, convex side primary cells showed the most acute action, and concave side primary cells showed the second-most acute action when exposed under same adiponectin concentration gradient. CONCLUSION: Our results indicated that high circulating adiponectin levels may result from gene variations in AIS osteopenia. Adiponectin has a negative effect on bone metabolism, and this negative effect might be mediated by the ADR1-RANKL/OPG and ADR1-IL6 pathways.


Subject(s)
Adiponectin/metabolism , Bone Diseases, Metabolic/complications , Bone and Bones/pathology , Interleukin-6/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Scoliosis/complications , Signal Transduction , Adiponectin/blood , Adolescent , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/genetics , Case-Control Studies , Female , Humans , Male , Organ Size , Osteoblasts/pathology , Osteoclasts/pathology , Polymorphism, Single Nucleotide/genetics , Receptors, Adiponectin/metabolism , Scoliosis/blood , Scoliosis/diagnostic imaging , Scoliosis/genetics , Spine/pathology , X-Ray Microtomography , Zygapophyseal Joint/pathology
18.
Pharmacology ; 103(1-2): 101-109, 2019.
Article in English | MEDLINE | ID: mdl-30522105

ABSTRACT

It has been reported that taxifolin inhibit osteoclastogenesis in RAW264.7 cells. In our research, the inhibition effects of taxifolin on the osteoclastogenesis of human bone marrow-derived macrophages (BMMs) induced by receptor activator of NF-κB ligand (RANKL) as well as the protection effects in lipopolysaccharide-induced bone lysis mouse model have been demonstrated. In vitro, taxifolin inhibited RANKL-induced osteoclast differentiation of human BMMs without cytotoxicity. Moreover, taxifolin significantly suppressed RANKL-induced gene expression, including tartrate-resistant acid phosphatase, matrix metalloproteinase-9 nuclear factor of activated T cells 1 and cathepsin K, and F-actin ring formation. Further studies showed that taxifolin inhibit osteoclastogenesis via the suppression of the NF-κB signaling pathway. In vivo, taxifolin prevented bone loss in mouse calvarial osteolysis model. In conclusion, the results suggested that taxifolin has a therapeutic potential for osteoclastogenesis-related diseases such as osteoporosis, osteolysis, and rheumatoid arthritis.


Subject(s)
Bone Resorption/chemically induced , Bone Resorption/drug therapy , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Osteogenesis/drug effects , Quercetin/analogs & derivatives , RANK Ligand/antagonists & inhibitors , Actins/metabolism , Animals , Cathepsin K/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Humans , I-kappa B Kinase/metabolism , Macrophages/cytology , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteolysis/chemically induced , Osteolysis/drug therapy , Osteolysis/pathology , Quercetin/pharmacology , RANK Ligand/pharmacology , RAW 264.7 Cells , Signal Transduction , Transcription Factor RelA/metabolism
19.
ACS Biomater Sci Eng ; 4(8): 2825-2835, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-33435006

ABSTRACT

Cell encapsulation using microgel and nanogel, as a strategy of cell surface engineering, can mimic the niches of cells and organoids. The established niche that seasons cells and tissues for the controllable development underlies the superiority of encapsulation on cells. Encapsulation by layer-by-layer nanogel coating is a bottom-up simulation of extracellular matrices via nano- or micropackaging of cells in a multiscale way. We report the nanogel encapsulation on individual neuronal cell for a basic study and application of permeability tuning to regulate cells' apoptosis. Gelatin and hyaluronic acid (HA) are applied for encapsulating PC12 cells. The permeability of encapsulation on cells can be managed by adjusting different parameters such as material concentration, layer thickness and environmental pH. Eventually, permeability of tumor necrosis factor-α (TNF-α) is controlled by tuning encapsulating parameters for blocking the interaction with TNF-receptor 1, so that cell apoptosis is inhibited. In short, nanogel encapsulation exhibits controllable permeability to different molecules and exerts screen effect on TNF-α for protection. This technique holds great potential in basic biological research and translational research, for example, the protection of transplanted cells against apoptotic factors in target areas.

20.
Infect Genet Evol ; 57: 138-144, 2018 01.
Article in English | MEDLINE | ID: mdl-29158203

ABSTRACT

Spinal tuberculosis (TB) accounts for 1%-5% of all TB infections. Host genetic variation influences susceptibility to Mycobacterium tuberculosis (MTB). P2X7 receptor (P2X7R) expressed on cells has been identified as a regulatory molecule in cell death/apoptosis, killing of intercellular pathogens, and bone turnover. This study investigated the P2X7 gene polymorphisms and protein levels in spinal TB. P2X7 gene -762C>T and 489C>T polymorphisms were genotyped. The expression of P2X7R in bone or intervertebral disc (ID) tissues was analyzed by Western blot assay. The -762C>T and 489C>T polymorphisms were associated with susceptibility to spinal TB. Having the -762CC genotype and -762C allele increased the risk of developing spinal TB (CC vs. TT: P=0.031, OR [95%CI]=1.865 [1.053-3.304]; C vs. T: P=0.028, OR [95%CI]=1.355 [1.034-1.775]). The presence of the 489T allele was associated with an increased risk of developing spinal TB (TT vs. CC: P=0.004, OR [95%CI]=2.248 [1.283-3.939]; CT vs. CC: P=0.044, OR [95%CI]=1.755 [1.011-3.047]; T vs. C: P=0.004, OR [95%CI]=1.482 [1.134-1.936]; TT+CT vs. CC: P=0.010, OR [95%CI]=1.967 [1.171-3.304]; TT vs. CT+CC: P=0.037, OR [95%CI]=1.489 [1.023-2.167]). The expression of P2X7R in TB-induced bone lesions increased significantly among spinal TB patients (t=0.011). Carrying the P2X7 -762CC genotype and 489T allele is associated with an increased risk of developing spinal TB in a Southern Chinese Han population.


Subject(s)
Asian People , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Tuberculosis, Spinal/genetics , Alleles , Case-Control Studies , China , Female , Genetic Association Studies , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Male , Phenotype , Tuberculosis, Spinal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...