Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(19): 5920-5928, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708934

ABSTRACT

A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.

2.
ACS Appl Mater Interfaces ; 15(33): 39396-39407, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37556767

ABSTRACT

Efforts to lower the operating temperature of solid oxide fuel cells include producing electrolytes that are sufficiently conductive and stable below 600 °C. Doped ceria is one such electrolyte being considered. During this study, codoped ceria powders (Ce0.8Sm0.2-xMxO2-δ, M = Bi3+, Zn2+ and x = 0, 0.05, 0.1, 0.15, 0.2) were prepared via coprecipitation by the addition of sodium carbonate and annealed at 800 and 1200 °C, respectively. Poor solubility of the codopants in the ceria was observed for samples annealed at 800 °C, resulting in a mixed-phase product including stable phases of the oxides of these codopants. A second-stage partial incorporation of these codopants into the ceria lattice was observed when the annealing temperature was increased to 1200 °C, with both codopants forming cubic-type phases of their respective oxides. Materials were characterized using X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR), as well as scanning electron microscopy (SEM) for structural and morphological investigations. The oxide ion conductivity was evaluated using electrochemical impedance spectroscopy between 550 and 750 °C. Fuel cell performance tests of selected samples (annealed at 1200 °C) showed remarkable improvement in peak power densities when the test temperature was increased from 500 to 600 °C (∼720 mW/cm2 for Ce0.8Sm0.15Bi0.05O2-δ and ∼1230 mW/cm2 for Ce0.8Sm0.15Zn0.05O2-δ), indicating possible contribution from the distinct cubic-type oxide phases of the codopants in performance enhancement.

3.
ChemSusChem ; 12(22): 4962-4967, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31448537

ABSTRACT

Carbon materials with a high specific surface area are usually preferred to construct the air cathode of lithium-air batteries due to their abundant sites for oxygen reduction and discharge product growth. However, the high surface area also amplifies electrolyte degradation during charging, which would become the threshold of cyclability after addressing the issue of electrode passivation and pore clogging, but is usually overlooked in relevant research. Herein, it is proven that the critical influence of cathode surface area on electrolyte consumption by adopting carbon-ceramic composites to reduce the surface area of the air cathode. After screening several potential ceramic materials, an optimal composite of Ketjenblack (KB) and La0.7 Sr0.3 MnO3 (LSM) delivered a discharge capacity that was even higher than that of pure KB. This composite effectively mitigated the parasitic reaction current by 45 % if polarized at 4.4 V versus Li+ /Li. Correspondingly, this composite prolonged the cycle life of the cell by 156 %. The results demonstrate that electrolyte consumption during charging is one of the critical boundary conditions to restrain the cyclic stability of lithium-air batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...