Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Neuropsychol Child ; : 1-11, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316010

ABSTRACT

This study examines functional brain network changes in children with frontal lobe tumors (FLT). Ten pediatric FLT patients from Beijing Tiantan Hospital and 20 healthy children were compared in terms of cognitive performance and resting-state functional magnetic resonance imaging (rs-fMRI) connectivity. The FLT group showed lower cognitive performance, particularly in visual and working memory domains, but had comparable attention abilities to the healthy controls. There were notable differences in connectivity between the default mode network (DMN) and sensorimotor network (SMN) in both groups. The FLT group also displayed a significant reduction in local efficiency in the left lateral parietal area within the DMN. Importantly, reduced DMN-SMN connections and increased DMN-lateral prefrontal cortex connectivity may facilitate maintaining attention and memory tasks in FLT children. This study sheds light on how the brains of children with FLT adapt, preserving "normal" attention functions despite frontal lobe damage.

2.
Brain Imaging Behav ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376714

ABSTRACT

We explored the structural and functional changes of the healthy hemisphere of the brain after surgery in children with intracranial space-occupying lesions. We enrolled 32 patients with unilateral intracranial space-occupying lesions for brain imaging and cognitive assessment. Voxel-based morphometry and surface-based morphometry analyses were used to investigate the structural images of the healthy hemisphere. Functional images were analyzed using regional homogeneity, amplitude of low-frequency fluctuations, and fractional-amplitude of low-frequency fluctuations. Voxel-based morphometry and surface-based morphometry analysis used the statistical model built into the CAT 12 toolbox. Paired t-tests were used for functional image and cognitive test scores. For structural image analysis, we used family-wise error correction of peak level (p < 0.05), and for functional image analysis, we use Gaussian random-field theory correction (voxel p < 0.001, cluster p < 0.05). We found an increase in gray matter volume in the healthy hemisphere within six months postoperatively, mainly in the frontal lobe. Regional homogeneity and fractional-amplitude of low-frequency fluctuations also showed greater functional activity in the frontal lobe. The results of cognitive tests showed that psychomotor speed and motor speed decreased significantly after surgery, and reasoning increased significantly after surgery. We concluded that in children with intracranial space-occupying lesions, the healthy hemisphere exhibits compensatory structural and functional effects within six months after surgery. This effect occurs mainly in the frontal lobe and is responsible for some higher cognitive compensation. This may provide some guidance for the rehabilitation of children after brain surgery.

3.
BMC Pediatr ; 23(1): 550, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37919687

ABSTRACT

BACKGROUND: To assess the cognitive function changes and brain network neuroplasticity in school-age children having large (diameter > 5 cm) left middle fossa arachnoid cyst (MFACs). METHODS: Eleven patients and 22 normal controls (NC) between 6 and 14 years of age were included. The CNS Vital Signs (CNS VS) were administered for cognitive assessment. The differences of cognitive data and functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) were compared between the patient group and the NC group. The correlations between the altered FC and cognitive data in the patient group were assessed. RESULTS: Patient group had significantly poorer attention (including Complex Attention, Sustained Attention, Simple Attention, Cognitive Flexibility, and Executive Function) and memory function (Visual Memory and Working Memory) than the NC group (uncorrected p-value, p-unc < 0.05). Whole-brain local correlation (LCOR) analysis showed an extensively lower LCOR in the patient group (voxel threshold p-unc < 0.001, cluster-size threshold of false discovery rate adjusted p (p-FDR) < 0.001). Functional connectivity (FC) analysis showed that bilateral frontal and temporal lobes connectivity in the patient group was significantly lower than the NC group (p-FDR < 0.05). Seed-based FC analysis indicated that there was altered FC between the right temporal lobe and the left temporal-parietal/temporal-occipital area (p-FDR < 0.05). In the patient group, most of the altered FC had a negative correlation to the cognitive score, while the FC in the right temporal lobe-left temporal-occipital area positively correlated to Verbal/Visual Memory (r = 0.41-0.60, p-FDR < 0.05). In correlation analysis between clinical data and cognitive score, the only significant result was a low correlation between cyst size and Reaction Time (-0.30--0.36, P-FDR < 0.05). CONCLUSIONS: School-aged children with large left MFAC showed significantly lower cognitive performance primarily in attention and memory domains. Distinct from neuroplasticity in a unilateral brain lesion, compensation in the healthy hemisphere in MFAC patients was sparse.


Subject(s)
Arachnoid Cysts , Humans , Child , Arachnoid Cysts/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain , Memory, Short-Term , Cognition
4.
Front Immunol ; 14: 1220100, 2023.
Article in English | MEDLINE | ID: mdl-37662954

ABSTRACT

Background: Gliomas, the most prevalent primary malignant tumors of the central nervous system in adults, exhibit slow growth in lower-grade gliomas (LGG). However, the majority of LGG cases progress to high-grade gliomas, posing challenges for prognostication. The tumor microenvironment (TME), characterized by telomere-related genes and immune cell infiltration, strongly influences glioma growth and therapeutic response. Therefore, our objective was to develop a Telomere-TME (TM-TME) classifier that integrates telomere-related genes and immune cell landscape to assess prognosis and therapeutic response in glioma. Methods: This study encompassed LGG patients from the TCGA and CCGA databases. TM score and TME score were derived from the expression signatures of telomere-related genes and the presence of immune cells in LGG, respectively. The TM-TME classifier was established by combining TM and TME scores to effectively predict prognosis. Subsequently, we conducted Kaplan-Meier survival estimation, univariate Cox regression analysis, and receiver operating characteristic curves to validate the prognostic prediction capacity of the TM-TME classifier across multiple cohorts. Gene Ontology (GO) analysis, biological processes, and proteomaps were performed to annotate the functional aspects of each subgroup and visualize the cellular signaling pathways. Results: The TM_low+TME_high subgroup exhibited superior prognosis and therapeutic response compared to other subgroups (P<0.001). This finding could be attributed to distinct tumor somatic mutations and cancer cellular signaling pathways. GO analysis indicated that the TM_low+TME_high subgroup is associated with the neuronal system and modulation of chemical synaptic transmission. Conversely, the TM_high+TME_low subgroup showed a strong association with cell cycle and DNA metabolic processes. Furthermore, the classifier significantly differentiated overall survival in the TCGA LGG cohort and served as an independent prognostic factor for LGG patients in both the TCGA cohort (P<0.001) and the CGGA cohort (P<0.001). Conclusion: Overall, our findings underscore the significance of the TM-TME classifier in predicting prognosis and immune therapeutic response in glioma, shedding light on the complex immune landscape within each subgroup. Additionally, our results suggest the potential of integrating risk stratification with precision therapy for LGG.


Subject(s)
Glioma , Telomere , Adult , Humans , Prognosis , Biomarkers , Telomere/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Central Nervous System , Tumor Microenvironment/genetics
5.
Front Pediatr ; 11: 1127098, 2023.
Article in English | MEDLINE | ID: mdl-36969297

ABSTRACT

Background: Low-grade frontal lobe tumors (LGFLT) can be cured through total resection, but surgical trauma could impair higher-order cognitive function. We aim to characterize the short-term natural cognitive recovery and brain plasticity in surgically-treated pediatric patients with LGFLT. Methods: Ten pediatric patients with LGFLT were enrolled. Their cognitive function was assessed before the surgery (S0), in the first month post-surgery (S1), and 3-6 months post-surgery (S2), using the CNS Vital Signs battery. DTI and rs-fMRI were performed during the same time periods. Changes of cognition and image metrics between S1>S0 and S2>S1 were analyzed. Results: The Motor Speed (MotSp) and Reaction Time (RT) scores significantly decreased in S1 and recovered in S2. Rs-fMRI showed decreased functional connectivity (FC) between the bilateral frontal lobes and bilateral caudates, putamina, and pallidi in S1>S0 (voxel threshold p -unc < 0.001 , cluster threshold p -FDR < 0.05 ). In S2>S1, FC recovery was observed in the neighboring frontal cortex areas ( p -unc < 0.001 , p -FDR < 0.05 ). Among them, the FC in the caudates-right inferior frontal gyri was positively correlated to the RT ( p -FDR < 0.05 ). A DTI Tract-based spatial statistics (TBSS) analysis showed decreased fractional anisotropy and axial diffusivity mainly in the corticospinal tracts, cingulum, internal capsule, and external capsule at 0-6 months post-surgery (TFCE- p < 0.05 ). The DTI metrics were not associated with the cognitive data. Conclusion: Processing speed impairment after an LGFLT resection can recover naturally within 3-6 months in school-age children. Rs-fMRI is more sensitive to short-term brain plasticity than DTI TBSS analysis. "Map expansion" plasticity in the frontal-basal ganglia circuit may contribute to the recovery.

6.
Appl Neuropsychol Child ; : 1-10, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36519237

ABSTRACT

BACKGROUND: A fast and reliable neurocognitive assessment tool is required for pediatric patients with an intracranial space-occupying lesion (ICSOL). METHODS: A cross-sectional study was conducted on 41 pediatric patients having ICSOL. Cognitive abilities were assessed using both WISC-IV and CNS Vital Signs (CNS VS). All domains are compared to the normative data. Spearman's correlation analysis is performed between domains in two batteries. RESULTS: In the WISC-IV, CPI, PSI, and WMI are significantly lower than the normative level. In the CNS VS, NCI, Memory domains, Reaction Time, Social Acuity, and Sustained Attention are significantly lower. Six domains in the CNS VS, including Complex Attention, Sustained Attention, Cognitive Flexibility, Executive Function, Processing Speed, and Social Acuity, positively correlate to the PSI or CPI in the WISC-IV. Sixty percent (9/15) of domains in the CNS VS negatively correlate to the size of ISCOL. The FSIQ in the WISC-IV is significantly associated with patients' parent education level. CONCLUSION: Compared to the WISC-IV, CNS VS takes less time, but measures more domains. CNS VS is more sensitive to the size of ICSOL but is not affected by patients' parent education level. A healthy control group is warranted for interpreting the results in Chinese participants.

7.
BMC Pediatr ; 22(1): 321, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650566

ABSTRACT

BACKGROUND: Studies on cognition and brain networks after various forms of brain injury mainly involve traumatic brain injury, neurological disease, tumours, and mental disease. There are few related studies on surgical injury and even fewer pediatric studies. This study aimed to preliminarily explore the cognitive and brain network changes in children with focal, unilateral, well-bounded intracranial space-occupying lesions (ISOLs) in the short term period after surgery. METHODS: We enrolled 15 patients (6-14 years old) with ISOLs admitted to the Department of Pediatric Neurosurgery of the Beijing Tiantan Hospital between July 2020 and August 2021. Cognitive assessment and resting-state functional magnetic resonance imaging (rs-fMRI) were performed. Regional homogeneity (Reho), seed-based analysis (SBA) and graph theory analysis (GTA) were performed. Paired T-test was used for statistical analysis of cognitive assessment and rs-fMRI. Gaussian random-field theory correction (voxel p-value < 0.001, cluster p-value < 0.05) was used for Reho and SBA. False discovery rate correction (corrected p value < 0.05) for GTA. RESULTS: Our results showed that psychomotor speed decreased within three months after surgery. Further, rs-fMRI data analysis suggested that sensorimotor and occipital network activation decreased with low information transmission efficiency. CONCLUSION: We prudently concluded that the changes in cognitive function and brain network within three months after surgery may be similar to ageing and that the brain is vulnerable during this period.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Adolescent , Brain/physiology , Child , Cognition , Humans , Intraoperative Complications , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...