Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Psychol ; 15: 1379705, 2024.
Article in English | MEDLINE | ID: mdl-38784620

ABSTRACT

Background: The exploration of personality traits in relation to psychological constructs has become increasingly relevant in understanding the mental health of university students (the emerging adulthood). Studies have focused on how dimensions intersect with various psychological parameters. Aim: The study aims to identify distinct personality profiles among university students based on Eysenck's personality dimensions and investigate how these profiles differ across psychological constructs. Method: A quantitative methodology was utilized, involving 708 university students from Wenzhou and Nanjing in China as participants. The research employed the Eysenck Personality Questionnaire along with other psychological measures. Latent Profile Analysis was applied to categorize the participants into distinct personality profiles. Results: Four distinct personality profiles emerged: 'The Reserved Analyst,' 'The Social Diplomat,' 'The Unconventional Pragmatist,' and 'The Impulsive Truth-Teller.' Significant differences were found among these profiles on various psychological constructs. 'The Social Diplomat' exhibited the most adaptive psychological profile, with higher cognitive reappraisal (F = 45.818, p < 0.001, η2 = 0.163), meaning in life (F = 17.764, p < 0.001, η2 = 0.070), and positive coping (F = 40.765, p < 0.001, η2 = 0.148) compared to other profiles. Conversely, 'The Reserved Analyst' showed higher intolerance of uncertainty (F = 13.854, p < 0.001, η2 = 0.056) and state anxiety (F = 26.279, p < 0.001, η2 = 0.101). Conclusion: This study enriches the understanding of personality traits in relation to psychological constructs within the context of university student populations. By identifying distinct personality profiles, it lays the groundwork for developing tailored mental health strategies that cater to the specific needs of different student groups.

2.
Adv Mater ; : e2403929, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744294

ABSTRACT

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure. Combining scanning probe microscopy, transmission electron microscopy, and density functional theory calculations, this work realizes force-triggered out-of-plane and in-plane dipoles with distorted smaller warping in GeSe. The Janus state is preserved after removing the external mechanical perturbation, which could be switched by modulating the sliding direction. This work offers a versatile method to break the space inversion symmetry in a 2D system to trigger polarization in the atomic scale, which may open an innovative insight into configuring novel 2D polarization materials.

3.
Sci Adv ; 10(22): eadk9928, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820158

ABSTRACT

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

4.
Eur J Immunol ; 54(5): e2350739, 2024 May.
Article in English | MEDLINE | ID: mdl-38461541

ABSTRACT

Using data from single-cell RNA sequencing and flow cytometry, we initially examined the expression of FCRL3, finding it to be elevated and positively associated with TIGIT expression in the regulatory T cells of patients with systemic lupus erythematosus. This also suggests that the co-expression of FCRL3 and TIGIT warrants further attention.


Subject(s)
Lupus Erythematosus, Systemic , Receptors, Immunologic , T-Lymphocytes, Regulatory , Humans , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , T-Lymphocytes, Regulatory/immunology , Up-Regulation/immunology , Female , Male , Adult
5.
Int Immunopharmacol ; 126: 111231, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38016349

ABSTRACT

OBJECTIVE: This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS: Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS: CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION: CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.


Subject(s)
Antineoplastic Agents , Lupus Erythematosus, Systemic , Adult , Humans , Perforin/genetics , Perforin/metabolism , Up-Regulation , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes , Antineoplastic Agents/metabolism , Flow Cytometry , CX3C Chemokine Receptor 1/metabolism
6.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37972388

ABSTRACT

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

7.
Vet Microbiol ; 285: 109872, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690146

ABSTRACT

Vaccines are widely used to prevent Newcastle disease virus (NDV). Under the pressure of immunization, NDVs with mutations among epitopes of F and HN protein were isolated, which indicates that the efficiency of vaccine may decrease in terms of preventing emerged NDV. However, the lack of evidences to support whether these mutations contribute to antigenic mutation and immune escape in NDV leading to the controversy that the matched vaccine is more effective than the mismatched vaccine. In this study, a genotype VII velogenic NDV strain (C22) was isolated from a vaccinated farm in Tibet, China. We found that this strain was close to NDV from east China, but it had a specific mutation (K138R) in one epitope (131DYIGGIGKE139) of HN protein. This mutation might change the interaction between amino acids in stalk-head link region of HN protein and then induce the specific antibody to worse recognize the C22 strain, but it did not alter viral virulence and growth ability. Then, the C22 strain was attenuated via modification of the F protein cleavage site to generate a matched vaccine. Comparing to a mismatched vaccine (LaSota), this matched vaccine showed advantages in inhibiting viral shedding and tissue damage. However, both vaccines induced chicken to generate similar level of neutralizing antibodies against C22, C22mut (R138K) and LaSota. These results suggest that the epitope mutation is insufficient to help NDV escaping neutralizing antibodies of vaccinated chicken, supporting that the merits of NDV matched vaccine are not totally related to humoral immunity.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus , Hemagglutinins/genetics , Neuraminidase/genetics , Tibet , HN Protein/genetics , Viral Vaccines/genetics , Chickens , Viral Proteins/genetics , Antibodies, Neutralizing/genetics , China , Antigenic Variation , Epitopes/genetics , Antibodies, Viral , Genotype
8.
Immunol Invest ; 52(7): 879-896, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37642473

ABSTRACT

OBJECTIVE: To investigate the expression of layilin (LAYN) in human circulating monocytes and lymphocytes and its clinical significance in systemic lupus erythematosus (SLE). METHODS: Blood samples were collected from 51 SLE patients and 50 healthy controls. Flow cytometry was used to analyze LAYN in lymphocytes and monocyte subsets. Functionally characterized molecules including human HLA, CD74 and CD62L were studied in LAYN+ monocytes. A correlation analysis was conducted between LAYN-related subsets and clinical indicators of SLE such as anti-double-stranded DNA and complements levels. ROC curves were used to explore the potential clinical diagnostic value of LAYN in SLE. RESULTS: LAYN was significantly higher in monocytes than in lymphocytes and higher in CD14+CD16+ monocytes than in CD14-CD16+ and CD14+CD16- monocytes. CD74 was upregulated and CD62L was downregulated in LAYN+ monocytes compared with LAYN- monocytes. The absolute number of LAYN+ monocytes was increased in SLE patients, and the median fluorescence intensity of HLA was decreased. LAYN+ monocytes were positively correlated with complement C4, while decreased CD62L+ percentages in LAYN+ monocytes were negatively correlated with C4. The ROC analysis revealed that the area under the curve (AUCs) for CD62L+ percentages in LAYN+ monocytes, LAYN+ lymphocyte numbers, and LAYN+ monocyte numbers to distinguish SLE from healthy individuals were 0.6245, 0.6196 and 0.6173, respectively. CONCLUSION: LAYN is differentially expressed in monocytes and their subpopulations and has corresponding functional differences. Changes in LAYN expression on monocytes are associated with complement C4 levels in SLE patients. These suggest that LAYN may be involved in the pathogenesis of SLE. ABBREVIATION: ANOVA: analysis of variance; anti-dsDNA: anti-double-stranded DNA; anti-ENA: anti-extractable nuclear antigen; anti-SSA: anti-Sjogren syndrome A; anti-SSB: anti-Sjogren syndrome B; anti-U1RNP: anti-U1 ribonucleoprotein; AUC: area under the ROC curve; CBC: complete blood count; CD62L: L-selectin; CD74/Ii: MHC class II invariant chain; CD44/HCAM: homing cell adhesion molecule; cMos: classical monocytes; CRP: C-reactive protein; CXCR2: C-X-C motif chemokine receptor 2; CXCR4: C-X-C motif chemokine receptor 4; ESR: erythrocyte sedimentation rate; HCs: healthy controls; HA: hyaluronan; HLA: human leukocyte antigen; Ig: immunoglobulin; iMos: intermediate monocytes; LAYN: layilin; MFI: median fluorescence intensity; MIF: migration inhibitory factor; ncMos: nonclassical monocytes; PBMCs: peripheral blood mononuclear cells; ROC: receiver operating characteristic curve; SLE: systemic lupus erythematosus; SLEDAI, SLE disease activity index; Treg: regulatory T cells; WBCs: white blood cells.


Subject(s)
Lupus Erythematosus, Systemic , Monocytes , Humans , Leukocytes, Mononuclear , Complement C4 , Antibodies, Antinuclear , Receptors, Chemokine , Lectins, C-Type
9.
Microbiol Spectr ; 11(3): e0402422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036344

ABSTRACT

When it comes to the prevention of clinical signs and mortality associated with infection of the Newcastle disease virus (NDV), vaccination has been very effective. However, recent evidence has proven that more highly virulent strains are emerging that bypass existing immune protection and pose a serious threat to the global poultry industry. Here, a novel rescued adenovirus 5-coexpressed chicken granulocyte monocyte colony-stimulating factor (ChGM-CSF) bio-adjuvant and C22-hemagglutinin-neuraminidase (HN) boosted chickens' immunological genetic resistance and thus improved the immunological effectiveness of the critical new-generation vaccine in vitro and in vivo. Accordingly, the hemagglutination inhibition (HI) titers (log2) of the recombinant adenovirus (rAdv)-ChGM-CSF-HN-immunized chickens had greater, more persistent, and longer-lasting NDV-specific antibodies than the La Sota and rAdv-HN-inoculated birds. Moreover, humoral and adaptive immunological conditions were shown to be in harmony after rAdv-ChGM-CSF-HN inoculation and uniformly enhanced the expression of alpha interferon (IFN-α), IFN-ß, IFN-γ, interleukin-1ß (IL-1ß), IL-2, IL-16, IL-18, and IL-22. Postchallenge, the control challenge (CC), wild-type adenovirus (wtAdv), and rAdv-ChGM-CSF groups developed unique NDV clinical manifestations, significant viral shedding, high tissue viral loads, gross and microscopic lesions, and 100% mortality within 7 days. The La Sota, rAdv-HN, and rAdv-ChGM-CSF-HN groups were healthy and had 100% survival rates. The rAdv-ChGM-CSF-HN group swiftly regulated and stopped viral shedding and had lower tissue viral loads than all groups at 5 days postchallenge (dpc). Thus, the antiviral activity of ChGM-CSF offered robust immune protection in the face of challenge and reduced viral replication convincingly. Our advance innovation concepts, combining ChGM-CSF with a field-circulating strain epitope, could lead to the development of a safe, genotype-matched, universal transgenic vaccine that could eradicate the disease globally, reducing poverty and food insecurity. IMPORTANCE We studied the biological characterization of the developed functional synthetic recombinant adenoviruses, which showed a high degree of safety, thermostability, and genetic stability for up to 20 passages. It was demonstrated through both in vitro and in vivo testing that the immunogenicity of the proposed vaccine, which uses the T2A peptide from the Thosea asigna virus capsid protein supported by glycine and serine, helps with efficiency to generate a multicistronic vector, enables expression of two functional proteins in rAdv-ChGM-CSF-HN, and is superior to that of comparable vaccines. Additionally, adenovirus can be used to produce vaccines matching the virulent field-circulating strain epitope. Because there is no preexisting human adenoviral immunity detected in animals, the potency of adenoviral vaccines looks promising. Also, it ensures that the living vector does not carry the resistance gene that codes for the kanamycin antibiotic. Accordingly, a human recombinant adenoviral vaccine that has undergone biological improvements is beneficial and important.


Subject(s)
Adenoviridae Infections , Newcastle Disease , Poultry Diseases , Viral Vaccines , Humans , Animals , Newcastle disease virus/genetics , Chickens , Neuraminidase , Hemagglutinins , Newcastle Disease/prevention & control , Adenoviridae , Antiviral Agents , Monocytes , Viral Vaccines/genetics , Vaccines, Synthetic , Genotype , Antibodies, Viral , Colony-Stimulating Factors/genetics , Granulocytes
10.
Tree Physiol ; 43(6): 965-978, 2023 06 07.
Article in English | MEDLINE | ID: mdl-36864631

ABSTRACT

Many studies have investigated the photoprotective and photosynthetic capacity of plant leaves, but few have simultaneously evaluated the dynamic changes of photoprotective capacity and photosynthetic maturation of leaves at different developmental stages. As a result, the process between the decline of photoprotective substances and the onset of photosynthetic maturation during plant leaf development are still poorly understood, and the relationship between them has not been quantitatively described. In this study, the contents of photoprotective substances, photosynthetic pigment content and photosynthetic capacity of leaves at different developmental stages from young leaves to mature leaves were determined by spatio-temporal replacement in eight dominant tree species in subtropical evergreen broadleaved forests. The correlation analysis found that the data sets of anthocyanins, flavonoids, total phenolics and total antioxidant capacity were mainly distributed on one side of the symmetry axis (y = x), while the data sets of flavonoids, total phenolics and total antioxidant capacity were mainly distributed on both sides of the symmetry axis (y = x). In addition, the content of photoprotective substances in plant leaves was significantly negatively correlated with photosynthetic pigment content and photosynthetic capacity but was significantly positively correlated with dark respiration rate (Rd). When chlorophyll accumulated to ~50% of the final value, the photoprotective substance content and Rd of plant leaves reached the lowest level, and anthocyanins disappeared completely; in contrast, the photosynthetic capacity reached the highest level. Our results suggest that anthocyanins mainly play a light-shielding role in the young leaves of most plants in subtropical forests. In addition, 50% chlorophyll accumulation in most plant leaves was the basis for judging leaf photosynthetic maturity. We also believe that 50% chlorophyll accumulation is a critical period in the transition of plant leaves from high photoprotective capacity (high metabolic capacity, low photosynthetic capacity) to low photoprotective capacity (low metabolic capacity, high photosynthetic capacity).


Subject(s)
Anthocyanins , Trees , Trees/metabolism , Anthocyanins/metabolism , Antioxidants/metabolism , Photosynthesis , Forests , Chlorophyll/metabolism , Plant Leaves
11.
ACS Appl Mater Interfaces ; 14(32): 36825-36833, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35929806

ABSTRACT

Ferroelectric solid solutions with composition near the morphotropic phase boundary (MPB) have gained extensive attention recently due to their excellent ferroelectric and piezoelectric properties. Here, we have demonstrated a strategy to realize the controllable preparation of BiFeO3-BaTiO3 (BF-BT) epitaxial films near the MPB. A series of high-quality BF-BT films were fabricated by pulsed laser deposition via adjusting oxygen partial pressure (PO2) using a BF-BT ceramic target. A continuous transition from rhombohedral to tetragonal phase was observed upon increasing PO2. Particularly, the film with a pure tetragonal phase exhibited a large remnant polarization of ∼90.6 µC/cm2, while excellent piezoelectric performance with an ultrahigh strain (∼0.48%) was obtained in the film with coexisting rhombohedral and tetragonal phases. The excellent ferroelectric and piezoelectric properties endow the BF-BT system near the MPB with great application prospects in lead-free electronic devices.

12.
Nano Lett ; 22(12): 4792-4799, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35639474

ABSTRACT

HfO2-based films with high compatibility with Si and complementary metal-oxide semiconductors (CMOS) have been widely explored in recent years. In addition to ferroelectricity and antiferroelectricity, flexoelectricity, the coupling between polarization and a strain gradient, is rarely reported in HfO2-based films. Here, we demonstrate that the mechanically written out-of-plane domains are obtained in 10 nm Hf0.5Zr0.5O2 (HZO) ferroelectric film at room temperature by generating the stress gradient via the tip of an atomic force microscope. The results of scanning Kelvin force microscopy (SKPM) exclude the possibility of flexoelectric-like mechanisms and prove that charge injection could be avoided by mechanical writing and thus reveal the true polarization state, promoting wider flexoelectric applications and ultrahigh-density storage of HZO thin films.

13.
Research (Wash D C) ; 2022: 9847949, 2022.
Article in English | MEDLINE | ID: mdl-35265849

ABSTRACT

A novel class of polymers and oligomers of chiral folding chirality has been designed and synthesized, showing structurally compacted triple-column/multiple-layer frameworks. Both uniformed and differentiated aromatic chromophoric units were successfully constructed between naphthyl piers of this framework. Screening monomers, catalysts, and catalytic systems led to the success of asymmetric catalytic Suzuki-Miyaura polycouplings. Enantio- and diastereochemistry were unambiguously determined by X-ray structural analysis and concurrently by comparison with a similar asymmetric induction by the same catalyst in the asymmetric synthesis of a chiral three-layered product. The resulting chiral polymers exhibit intense fluorescence activity in a solid form and solution under specific wavelength irradiation.

14.
Chemistry ; 28(7): e202200183, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35092103

ABSTRACT

Invited for the cover of this issue are Guigen Li's groups at Texas Tech University and Nanjing University. The cover artwork shows that chirality patterns exist from universal to molecular levels showing light emission properties. Read the full story of multilayer 3D chirality and its asymmetric catalytic synthesis at 10.1002/chem.202104102.


Subject(s)
Polymers , Catalysis , Humans
15.
ACS Nano ; 16(1): 1308-1317, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34978807

ABSTRACT

Searching van der Waals ferroic materials that can work under ambient conditions is of critical importance for developing ferroic devices at the two-dimensional limit. Here we report the experimental discovery of electric-field-induced reversible antiferroelectric (AFE) to ferroelectric (FE) transition at room temperature in van der Waals layered α-GeSe, employing Raman spectroscopy, transmission electron microscopy, second-harmonic generation, and piezoelectric force microscopy consolidated by first-principles calculations. An orientation-dependent AFE-FE transition provides strong evidence that the in-plane (IP) polarization vector aligns along the armchair rather than zigzag direction in α-GeSe. In addition, temperature-dependent Raman spectra showed that the IP polarization could sustain up to higher than 700 K. Our findings suggest that α-GeSe, which is also a potential ferrovalley material, could be a robust building block for creating artificial 2D multiferroics at room temperature.

16.
Transbound Emerg Dis ; 69(5): 2634-2648, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34904395

ABSTRACT

Low virulence and strong immunogenicity are quite important for Newcastle disease virus (NDV) producing Newcastle disease (ND) living-attenuated vaccine. However, immunogenicity of NDV positively correlates to its virulence. Usually, the velogenic NDV induces stronger immune responses of poultry than the lentogenic strain, but virulent NDV poses a risk for chicken. In this study, we identified the chicken interferon (IFN)-stimulated gene 12-2 (ISG12(2)) not only attenuated NDV, but also increased immunogenicity of ND vaccine strain. First, we found that NDV infection or IFNs stimulation induced expression of chicken ISG12(2) that reinforced expression of IFNs. Over-expression or knock-down proved that chicken ISG12(2) inhibited NDV replication. Then, recombinant NDV LaSota strains (rLaSota/Fmut/ISG12(2) and rLaSota/ISG12(2)), expressing ISG12(2), were rescued. Pathogenicity tests showed that ISG12(2) expression attenuated NDV. RNA-seq or RT-qPCR demonstrated that, comparing to rLaSota/Fmut and rLaSota, rLaSota/Fmut/ISG12(2) and rLaSota/ISG12(2) induced hosts to produce cytokines enriching in innate and adaptive immune pathways in vitro and in vivo. Finally, we showed that rLaSota/ISG12(2) vaccination improved immune condition of chicken to quickly respond NDV infection and then enhance protection. These results suggest that chicken ISG12(2) is a potential novel molecular adjuvant to regulate immune responses, which decrease virulence and increase immunogenicity of NDV. The chicken ISG12(2) may contribute to the development of high efficient poultry vaccine.


Subject(s)
Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Chickens , Cytokines , Interferons/genetics , Newcastle Disease/prevention & control , Newcastle disease virus/genetics , Vaccines, Attenuated
17.
Chemistry ; 28(7): e202104102, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34962686

ABSTRACT

Unprecedented chiral multilayer folding 3D polymers have been assembled and regulated by uniform and differentiated aromatic chromophore units between naphthyl piers. Screening catalysts, catalytic systems and monomers were proven to be crucial for asymmetric catalytic Suzuki-Miyaura polycouplings for this assembly. X-ray crystallography of the corresponding dimers and trimers revealed the absolute configuration and the intermolecular packing pattern. Up to 61 960 Mw /41 900 Mn and m/z 4317 for polymers and oligomers, as confirmed by gel permeation chromatography (GPC) and MALDI-TOF MS, indicated that these frameworks were composed of multiple stacked layers. The resulting multiple π-assemblies exhibited remarkable optical properties in aggregated states (photoluminescence in solids and aggregation-induced emission in solutions), as well as reversible redox properties in electrochemical performance.


Subject(s)
Polymers , Catalysis , Chromatography, Gel , Crystallography, X-Ray
18.
Phys Chem Chem Phys ; 23(47): 26997-27004, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34842874

ABSTRACT

Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.

19.
Mycoses ; 64(6): 624-633, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33586267

ABSTRACT

BACKGROUND: Trichophyton schoenleinii is an anthropophilic dermatophyte that causes tinea favosa. Nowadays, it remains an important pathogen in some regions of the world, mainly epidemic in Africa and West Asia. Despite the medical importance of T. schoenleinii infections, a high-quality reference genome for T. schoenleinii is still unavailable, neither its transcriptomic profile. OBJECTIVES: The aim of the current study was to improve understanding of the underlying pathogenic mechanism of T. schoenleinii, and to define the candidate pathogenic genes of T. schoenleinii. METHODS: Comprehensive genomic analysis of T. schoenleinii was carried out by Illumina and PacBio sequencing platforms. Transcriptome profiles of T. schoenleinii cultured in vitro in two media containing either keratin or soy protein were determined using RNA sequencing (RNA-seq) technology. RESULTS: Here, we present the first draft genome sequence of T. schoenleinii strain T2s, which consists of 11 scaffolds containing 7474 predicted genes. Transcriptome analysis showed that genes involved in keratin hydrolysis have higher expression in T. schoenleinii grown in keratin medium, including genes encoding proteases, cysteine dioxygenase and acetamidase. Other genes with higher expression include genes encoding the components of the pH-responsive signal transduction pathways and transcription factors, many of which may play a role in pathogenicity. CONCLUSION: In summary, this study provides new insights into the pathogenic mechanism of T. schoenleinii and highlights candidate genes for further development of novel targets in disease diagnosis and treatment of tinea favosa.


Subject(s)
Genome, Fungal , Trichophyton/genetics , Virulence/genetics , Arthrodermataceae/genetics , Arthrodermataceae/isolation & purification , Gene Expression Profiling , Genes, Fungal , Humans , Keratins/metabolism , Tinea Favosa/microbiology , Trichophyton/metabolism
20.
Nat Commun ; 12(1): 655, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33510155

ABSTRACT

Solid-liquid interface is a key concept of many research fields, enabling numerous physical phenomena and practical applications. For example, electrode-electrolyte interfaces with electric double layers have been widely used in energy storage and regulating physical properties of functional materials. Creating a specific interface allows emergent functionalities and effects. Here, we show the artificial control of ferroelectric-liquid interfacial structures to switch polarization states reversibly in a van der Waals layered ferroelectric CuInP2S6 (CIPS). We discover that upward and downward polarization states can be induced by spontaneous physical adsorption of dodecylbenzenesulphonate anions and N,N-diethyl-N-methyl-N-(2-methoxyethyl)-ammonium cations, respectively, at the ferroelectric-liquid interface. This distinctive approach circumvents the structural damage of CIPS caused by Cu-ion conductivity during electrical switching process. Moreover, the polarized state features super-long retention time (>1 year). The interplay between ferroelectric dipoles and adsorbed organic ions has been studied systematically by comparative experiments and first-principles calculations. Such ion adsorption-induced reversible polarization switching in a van der Waals ferroelectric enriches the functionalities of solid-liquid interfaces, offering opportunities for liquid-controlled two-dimensional ferroelectric-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...