Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Br J Cancer ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217195

ABSTRACT

BACKGROUND: This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS: Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS: Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS: These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.

2.
FASEB J ; 38(13): e23782, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38934375

ABSTRACT

N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.


Subject(s)
Hexosyltransferases , Membrane Proteins , Protein Processing, Post-Translational , Humans , Glycosylation , HEK293 Cells , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Stability , Polysaccharides/metabolism
3.
Proc Biol Sci ; 290(1997): 20230124, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122256

ABSTRACT

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.


Subject(s)
Mentoring , Female , Humans , Pilot Projects , Mentors , Faculty , Peer Group
4.
Autophagy ; 19(2): 678-691, 2023 02.
Article in English | MEDLINE | ID: mdl-35838483

ABSTRACT

ABBREVIATIONS: BCL2: BCL2 apoptosis regulator; BCL10: BCL10 immune signaling adaptor; CARD11: caspase recruitment domain family member 11; CBM: CARD11-BCL10-MALT1; CR2: complement C3d receptor 2; EBNA: Epstein Barr nuclear antigen; EBV: Epstein-Barr virus; FCGR3A; Fc gamma receptor IIIa; GLILD: granulomatous-lymphocytic interstitial lung disease; HV: healthy volunteer; IKBKB/IKB kinase: inhibitor of nuclear factor kappa B kinase subunit beta; IL2RA: interleukin 2 receptor subunit alpha; MALT1: MALT1 paracaspase; MS4A1: membrane spanning 4-domain A1; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH: transcription factor; NCAM1: neural cell adhesion molecule 1; NFKB: nuclear factor kappa B; NIAID: National Institute of Allergy and Infectious Diseases; NK: natural killer; PTPRC: protein tyrosine phosphatase receptor type C; SELL: selectin L; PBMCs: peripheral blood mononuclear cells; TR: T cell receptor; Tregs: regulatory T cells; WT: wild-type.


Subject(s)
Epstein-Barr Virus Infections , Humans , Autophagy , Autophagy-Related Proteins/genetics , Herpesvirus 4, Human , Hyperplasia , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Mutation , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Vesicular Transport Proteins/genetics
5.
Hum Mol Genet ; 32(7): 1162-1174, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36345169

ABSTRACT

ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.


Subject(s)
ADP-Ribosylation Factor 1 , Neurodevelopmental Disorders , Humans , Animals , Mice , ADP-Ribosylation Factor 1/chemistry , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , Mutation, Missense , Female , Child , Golgi Apparatus/pathology , Endosomes/pathology , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology
6.
Methods Mol Biol ; 2473: 285-306, 2022.
Article in English | MEDLINE | ID: mdl-35819772

ABSTRACT

Lysosomes are membrane-bound organelles that degrade diverse biomolecules and regulate a multitude of other essential processes including cell growth and metabolism, signaling, plasma membrane repair and infection. Such diverse functions of lysosomes are highly coordinated in space and time and are therefore tightly coupled to the directional transport of the organelles within the cytoplasm. Thus, robust quantitative assessments of lysosome positioning within the cell provide a valuable tool for researchers interested in understanding these multifunctional organelles. Here, we present point-by-point methodology to measure lysosome positioning by two straight forward and widely used techniques: shell analysis and line scan.


Subject(s)
Lysosomes , Signal Transduction , Lysosomes/metabolism
7.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35579602

ABSTRACT

Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.


Subject(s)
Axons , Neuregulins , Receptor, ErbB-4 , Transcytosis , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Axons/metabolism , HEK293 Cells , Humans , Ligands , Mice , Neuregulins/genetics , Neuregulins/metabolism , Rats , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism
8.
Acta Parasitol ; 67(3): 1432-1439, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35639231

ABSTRACT

PURPOSE: The present study aims to report the occurrence of Eustrongylides sp. in some neotropical fish species commercialized in the Peruvian Amazonia. METHODS: Samples of young farmed Arapaima gigas were collected from a fish farmer; young Brachyplatystoma tigrinum were acquired from a fish exporter and samples of adult specimens of Acestrorhynchus falcirostris, Pseudoplatystoma punctifer, Cichla monoculus, Hoplias malabaricus, Hydrolycus scomberoides, Raphiodon vulpinus, and Serrasalmus rhombeus were acquired from a fish market of Iquitos, Loreto-Peru. Samples were transported to the "Laboratorio de Parasiología y Sanidad Acuícola" from "Instituto de Investigaciones de la Amazonía Peruana" located in Iquitos, Peru. RESULTS: Larvae L4 of Eustrongylides sp. were found in the host body, in the muscle, and in the visceral cavity of studied fish species. Notorious damages were reported in young A. gigas (lumps in the muscle, inflammation and severe redness of the skin) and in young B. tigrinum (perforation of the abdominal cavity), while in adult specimens of the remaining species, no external damage was reported. CONCLUSION: The presence of Eustrongylides sp. in various fish species collected in the city of Iquitos-Peru contributes to the distribution of this parasite in the Peruvian Amazon, reporting it, for the first time in this country. Its presence in the muscle of various fish species commercialized in fish markets, warm a possible public health concern and implications for their marketability in the city of Iquitos, Peru.


Subject(s)
Catfishes , Characiformes , Fish Diseases , Nematoda , Animals , Characiformes/parasitology , Fish Diseases/epidemiology , Fish Diseases/parasitology , Peru/epidemiology , Public Health
10.
Nat Commun ; 12(1): 6750, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799570

ABSTRACT

The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy , Caenorhabditis elegans Proteins/metabolism , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Vesicular Transport Proteins/metabolism , Animals , Animals, Genetically Modified , Autophagosomes/metabolism , Autophagy-Related Proteins/genetics , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Fatty Acids/metabolism , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Lipid Mobilization , Membrane Proteins/genetics , Mitochondria/metabolism , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vesicular Transport Proteins/genetics
11.
J Cell Sci ; 134(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34622922

ABSTRACT

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.


Subject(s)
COVID-19 , Pandemics , Autophagy , Humans , Inflammation , SARS-CoV-2
12.
Mol Biol Cell ; 32(21): ar25, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34432492

ABSTRACT

Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery are unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain. This interaction is counteracted by the microtubule-associated protein WDR47. These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.


Subject(s)
Autophagy-Related Proteins/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Vesicular Transport Proteins/metabolism , Autophagosomes/metabolism , Autophagy , Carrier Proteins/physiology , HEK293 Cells , HeLa Cells , Humans , Kinesins/metabolism , Microtubules/metabolism , Protein Transport/physiology , trans-Golgi Network/metabolism
13.
Nat Commun ; 12(1): 4552, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315878

ABSTRACT

The ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood. Herein we show that the sorting nexin SNX19 tethers endolysosomes to the endoplasmic reticulum (ER), decreasing their motility and contributing to their concentration in the perinuclear area of the cell. Tethering depends on two N-terminal transmembrane domains that anchor SNX19 to the ER, and a PX domain that binds to phosphatidylinositol 3-phosphate on the endolysosomal membrane. Two other domains named PXA and PXC negatively regulate the interaction of SNX19 with endolysosomes. These studies thus identify a mechanism for controlling the motility and positioning of endolysosomes that involves tethering to the ER by a sorting nexin.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Sorting Nexins/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/ultrastructure , Endosomes/ultrastructure , Humans , Lysosomes/ultrastructure , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Domains , Protein Transport , Sorting Nexins/chemistry
14.
PLoS Biol ; 19(7): e3001287, 2021 07.
Article in English | MEDLINE | ID: mdl-34283825

ABSTRACT

The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.


Subject(s)
Lysosomes/metabolism , Nanotubes , Protein Folding , alpha-Synuclein/metabolism , Animals , Cell Membrane Permeability , Coculture Techniques , Humans , Lysosomes/ultrastructure , Microscopy, Electron
15.
Autophagy ; 16(12): 2292-2293, 2020 12.
Article in English | MEDLINE | ID: mdl-33016201

ABSTRACT

ATG9, the only transmembrane protein in the core macroautophagy/autophagy machinery, is a key player in the early stages of autophagosome formation. Yet, the lack of a high-resolution structure of ATG9 was a major impediment in understanding its three-dimensional organization and function. We recently solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. The structure revealed that ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. In cellulo analyses demonstrated the functional importance of the cavity-lining residues. These cavities could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer. Finally, structure-guided molecular dynamics predicted that ATG9A has membrane-bending properties, which is consistent with its localization to highly curved membranes.


Subject(s)
Autophagy , Lipid Bilayers , Autophagy-Related Proteins , Humans , Membrane Proteins , Vesicular Transport Proteins
16.
Cell Rep ; 31(13): 107837, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32610138

ABSTRACT

Autophagy is a catabolic process involving capture of cytoplasmic materials into double-membraned autophagosomes that subsequently fuse with lysosomes for degradation of the materials by lysosomal hydrolases. One of the least understood components of the autophagy machinery is the transmembrane protein ATG9. Here, we report a cryoelectron microscopy structure of the human ATG9A isoform at 2.9-Å resolution. The structure reveals a fold with a homotrimeric domain-swapped architecture, multiple membrane spans, and a network of branched cavities, consistent with ATG9A being a membrane transporter. Mutational analyses support a role for the cavities in the function of ATG9A. In addition, structure-guided molecular simulations predict that ATG9A causes membrane bending, explaining the localization of this protein to small vesicles and highly curved edges of growing autophagosomes.


Subject(s)
Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Autophagy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Autophagy-Related Proteins/ultrastructure , Cryoelectron Microscopy , HEK293 Cells , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Mutagenesis/genetics , Phosphatidylcholines/chemistry , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Vesicular Transport Proteins/ultrastructure
17.
BMC Pediatr ; 19(1): 147, 2019 05 11.
Article in English | MEDLINE | ID: mdl-31078143

ABSTRACT

BACKGROUND: Current guidelines for management of respiratory distress syndrome (RDS) recommend continuous positive airway pressure (CPAP) as the primary mode of respiratory support even in the most premature neonates, reserving endotracheal intubation (ETI) for rescue surfactant or respiratory failure. The incidence and timing of ETI in practice is poorly documented. METHODS: In 27 Level III NICUs in the US (n = 19), Canada (n = 3) and Poland (n = 5), demographics and baseline characteristics, respiratory support modalities including timing of ETI, administration of surfactant and caffeine/other methylxanthines, and neonatal morbidities were prospectively recorded in consecutive preterm neonates following written parental consent. Infants were divided into three groups according to gestational age (GA) at birth, namely 26-28, 29-32 and 33-34 weeks. Statistical comparisons between groups were done using Chi-Square tests. RESULTS: Of 2093 neonates (US = 1507, 254 Canada, 332 Poland), 378 (18%) were 26-28 weeks gestational age (GA), 835 (40%) were 29-32 weeks, and 880 (42%) were 33-34 weeks. Antenatal steroid use was 81% overall, and approximately 89% in neonates ≤32 weeks. RDS incidence and use of ventilatory or supplemental oxygen support were similar across all sites. CPAP was initiated in 43% of all infants, being highest in the 29-32-week group, with a lower proportion in other GA categories (p < 0.001). The overall rate of ETI was 74% for neonates 26-28 weeks (42% within 15 min of birth, 49% within 60 min, and 57% within 3 h), 33% for 29-32 weeks (13 16 and 21%, respectively), and 16% for 33-34 weeks (5, 6 and 8%, respectively). Overall intubation rates and timing were similar between countries in all GAs. Rates within each country varied widely, however. Across US sites, overall ETI rates in 26-28-week neonates were 30-60%, and ETI within 15 min varied from 0 to 83%. Similar within 15-min variability was seen at Polish sites (22-67%) in this GA, and within all countries for 29-32 and 33-34-week neonates. CONCLUSION: Despite published guidelines for management of RDS, rate and timing of ETI varies widely, apparently unrelated to severity of illness. The impact of this variability on outcome is unknown but provides opportunities for further approaches which can avoid the need for ETI.


Subject(s)
Continuous Positive Airway Pressure/methods , Gestational Age , Infant, Premature , Intensive Care Units, Neonatal , Respiratory Distress Syndrome, Newborn/therapy , Airway Management , Canada , Chi-Square Distribution , Cohort Studies , Female , Humans , Infant, Newborn , Internationality , Male , Poland , Pregnancy , Prognosis , Prospective Studies , Pulmonary Surfactants/administration & dosage , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/mortality , Risk Assessment , Survival Rate , Treatment Outcome , United States
18.
PLoS Biol ; 17(5): e3000279, 2019 05.
Article in English | MEDLINE | ID: mdl-31100061

ABSTRACT

We report the development and characterization of a method, named reversible association with motor proteins (RAMP), for manipulation of organelle positioning within the cytoplasm. RAMP consists of coexpressing in cultured cells (i) an organellar protein fused to the streptavidin-binding peptide (SBP) and (ii) motor, neck, and coiled-coil domains from a plus-end-directed or minus-end-directed kinesin fused to streptavidin. The SBP-streptavidin interaction drives accumulation of organelles at the plus or minus end of microtubules, respectively. Importantly, competition of the streptavidin-SBP interaction by the addition of biotin to the culture medium rapidly dissociates the motor construct from the organelle, allowing restoration of normal patterns of organelle transport and distribution. A distinctive feature of this method is that organelles initially accumulate at either end of the microtubule network in the initial state and are subsequently released from this accumulation, allowing analyses of the movement of a synchronized population of organelles by endogenous motors.


Subject(s)
Cytological Techniques/methods , Molecular Motor Proteins/metabolism , Organelles/metabolism , Streptavidin/metabolism , Axons/metabolism , Axons/ultrastructure , Biological Transport , Biotin/metabolism , Dendrites/metabolism , Dendrites/ultrastructure , HeLa Cells , Humans , Organelles/ultrastructure , Reproducibility of Results
19.
Autophagy ; 15(10): 1694-1718, 2019 10.
Article in English | MEDLINE | ID: mdl-30806145

ABSTRACT

High-throughput screening identified 5 chemical analogs (termed the WX8-family) that disrupted 3 events in lysosome homeostasis: (1) lysosome fission via tubulation without preventing homotypic lysosome fusion; (2) trafficking of molecules into lysosomes without altering lysosomal acidity, and (3) heterotypic fusion between lysosomes and autophagosomes. Remarkably, these compounds did not prevent homotypic fusion between lysosomes, despite the fact that homotypic fusion required some of the same machinery essential for heterotypic fusion. These effects varied 400-fold among WX8-family members, were time and concentration dependent, reversible, and resulted primarily from their ability to bind specifically to the PIKFYVE phosphoinositide kinase. The ability of the WX8-family to prevent lysosomes from participating in macroautophagy/autophagy suggested they have therapeutic potential in treating autophagy-dependent diseases. In fact, the most potent family member (WX8) was 100-times more lethal to 'autophagy-addicted' melanoma A375 cells than the lysosomal inhibitors hydroxychloroquine and chloroquine. In contrast, cells that were insensitive to hydroxychloroquine and chloroquine were also insensitive to WX8. Therefore, the WX8-family of PIKFYVE inhibitors provides a basis for developing drugs that could selectively kill autophagy-dependent cancer cells, as well as increasing the effectiveness of established anti-cancer therapies through combinatorial treatments. Abbreviations: ACTB: actin beta; Baf: bafilomycin A1; BECN1: beclin 1; BODIPY: boron-dipyrromethene; BORC: BLOC-1 related complex; BRAF: B-Raf proto-oncogene, serine/threonine kinase; BSA: bovine serum albumin; CTSD: cathepsin D; CQ: chloroquine; DNA: deoxyribonucleic acid; EC50: half maximal effective concentration; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HCQ: hydroxychloroquine; HOPS complex: homotypic fusion and protein sorting complex; Kd: equilibrium binding constant; IC50: half maximal inhibitory concentration; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MES: 2-(N-morpholino)ethanesulphonic acid; MTOR: mechanistic target of rapamycin kinase; µM: micromolar; NDF: 3-methylbenzaldehyde (2,6-dimorpholin-4-ylpyrimidin-4-yl)hydrazine;NEM: N-ethylmaleimide; NSF: N-ethylmaleimide sensitive factor; PBS: phosphate-buffered saline; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PIP4K2C: phosphatidylinositol-5-phosphate 4-kinase type 2 gamma; PtdIns3P: phosphatidylinositol 3-phosphate; PtdIns(3,5)P2: phosphatidylinositol 3,5-biphosphate; RFP: red fluorescent protein; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; SQSTM1: sequestosome 1; TWEEN 20: polysorbate 20; V-ATPase: vacuolar-type H+-translocating ATPase; VPS39: VPS39 subunit of HOPS complex; VPS41: VPS41 subunit of HOPS complex; WWL: benzaldehyde [2,6-di(4-morpholinyl)-4-pyrimidinyl]hydrazone; WX8: 1H-indole-3-carbaldehyde [4-anilino-6-(4-morpholinyl)-1,3,5-triazin-2-yl]hydrazine; XBA: N-(3-chloro-4-fluorophenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride; XB6: N-(4-ethylphenyl)-4,6-dimorpholino-1,3,5-triazin-2-amine hydrochloride.


Subject(s)
Autophagy/drug effects , Homeostasis/drug effects , Lysosomes/drug effects , Neoplasms/pathology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/physiology , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Male , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Proto-Oncogene Mas , RAW 264.7 Cells
20.
Curr Opin Neurobiol ; 51: 103-110, 2018 08.
Article in English | MEDLINE | ID: mdl-29558740

ABSTRACT

Selective transport of transmembrane proteins to different intracellular compartments often involves the recognition of sorting signals in the cytosolic domains of the proteins by components of membrane coats. Some of these coats have as their key components a family of heterotetrameric adaptor protein (AP) complexes named AP-1 through AP-5. AP complexes play important roles in all cells, but their functions are most critical in neurons because of the extreme compartmental complexity of these cells. Accordingly, various diseases caused by mutations in AP subunit genes exhibit a range of neurological abnormalities as their most salient features. In this article, we discuss the properties of the different AP complexes, with a focus on their roles in neuronal physiology and pathology.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Neurons/metabolism , Protein Transport/physiology , Action Potentials/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Humans , Mutation/genetics , Nervous System Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL