Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Otolaryngol ; 136(4): 420-4, 2016.
Article in English | MEDLINE | ID: mdl-26854005

ABSTRACT

UNLABELLED: Conclusions A cocktail combining NAC, Mannitol, and Dexamethasone may be used to prevent loss of residual hearing post-implantation. There is a window of opportunity to treat the cochlea before the onset of cell death in HCs. Objective Inner ear trauma caused by cochlear implant electrode insertion trauma (EIT) initiates multiple molecular mechanisms in hair cells (HCs) or support cells (SCs), resulting in initiation of programmed cell death within the damaged tissues of the cochlea, which leads to loss of residual hearing. In earlier studies L-N-acetylcysteine (L-NAC), Mannitol, and dexamethasone have been shown independently to protect the HCs loss against different types of inner ear trauma. These three molecules have different otoprotective effects. The goal of this preliminary study is to test the efficacy of a combination of these molecules to enhance the otoprotection of HCs against EIT. Methods OC explants were dissected from P-3 rats and placed in serum-free media. Explants were divided into control and experimental groups. CONTROL GROUP: (1) untreated controls; (2) EIT. Experimental group: (1) EIT + L-NAC (5, 2, or 1 mM); (2) EIT + Mannitol (100, 50, or 10 mM); (3) EIT + Dex (20, 10, or 5 µg/mL); (4) EIT + L-NAC + Mannitol + Dex. After EIT was caused in an in-vitro model of CI, explants were cultured in media containing L-NAC alone, Mannitol alone, or Dex alone at decreasing concentrations. Concentrations of L-NAC, Mannitol, and Dex that showed 50% protection of hair cell loss individually were used as a combination in experimental group 4. Results There was an increase of total hair cell (THC) loss in the EIT OC explants when compared with control group HC counts or the tri-therapy cochlea. This study defined the dosage of L-NAC, Mannitol, and Dex for the survival of 50% protection of hair cells in vitro. Their combination provided close to 96% protection, demonstrating an additive effect.


Subject(s)
Acetylcysteine/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Dexamethasone/therapeutic use , Free Radical Scavengers/therapeutic use , Hearing Loss/prevention & control , Mannitol/therapeutic use , Postoperative Complications/prevention & control , Acetylcysteine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cochlear Implantation , Dexamethasone/pharmacology , Drug Therapy, Combination , Free Radical Scavengers/pharmacology , Hair Cells, Auditory/drug effects , Mannitol/pharmacology , Rats, Sprague-Dawley
2.
Acta Otolaryngol ; 135(4): 328-34, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25761716

ABSTRACT

CONCLUSION: Programmed cell death (PCD) initially starts in the support cells (SCs) after electrode insertion trauma (EIT), followed by PCD in hair cells (HCs). Activation of caspase-3 was observed only in SCs. Protecting both SCs and HCs with selective otoprotective drugs at an early stage post implantation may help to preserve residual hearing. OBJECTIVES: Cochlear implant EIT can initiate sensory cell losses via necrosis and PCD within the organ of Corti, which can lead to a loss of residual hearing. PCD appears to be a major factor in HC loss post-EIT. The current study aimed to: (1) determine the onset of PCD in both SCs and HCs within the traumatized organ of Corti; and (2) identify the molecular mechanisms active within the HCs and SCs that are undergoing PCD. METHODS: Adult guinea pigs were assigned to one of two groups: (1) EIT and (2) unoperated contralateral ears as controls. Immunostaining of dissected organ of Corti surface preparations for phosphorylated-Jun, cleaved caspase-3, and 4-hydroxy-2,3-nonenal (HNE) were performed at 6, 12, and 24 h post-EIT and for contralateral control ears. RESULTS: At 6 h post-EIT the SCs immunolabeled for the presence of phosphorylated-Jun and activated caspase-3. Phosphorylated p-Jun labeling was observed at 12 h in both the HCs and SCs of middle and basal cochlear turns. Cleaved caspase-3 was not observed in HCs of any cochlear turn at up to 24 h post-EIT. Lipid peroxidation (HNE immunostaining) was first observed at 12 h post-EIT in both the HCs and SCs of the basal turn, and reached the apical turn by 24 h post-EIT.


Subject(s)
Apoptosis/physiology , Cochlear Implantation/adverse effects , Cochlear Implants/adverse effects , Hair Cells, Auditory/pathology , Labyrinth Supporting Cells/pathology , Signal Transduction/physiology , Aldehydes/metabolism , Animals , Caspase 3/metabolism , Cochlear Implantation/instrumentation , Disease Models, Animal , Guinea Pigs , Hair Cells, Auditory/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Labyrinth Supporting Cells/metabolism , Oxidative Stress/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL