Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Nature ; 606(7915): 761-768, 2022 06.
Article in English | MEDLINE | ID: mdl-35551511

ABSTRACT

SARS-CoV-2, like other coronaviruses, builds a membrane-bound replication organelle to enable RNA replication1. The SARS-CoV-2 replication organelle is composed of double-membrane vesicles (DMVs) that are tethered to the endoplasmic reticulum (ER) by thin membrane connectors2, but the viral proteins and the host factors involved remain unknown. Here we identify the viral non-structural proteins (NSPs) that generate the SARS-CoV-2 replication organelle. NSP3 and NSP4 generate the DMVs, whereas NSP6, through oligomerization and an amphipathic helix, zippers ER membranes and establishes the connectors. The NSP6(ΔSGF) mutant, which arose independently in the Alpha, Beta, Gamma, Eta, Iota and Lambda variants of SARS-CoV-2, behaves as a gain-of-function mutant with a higher ER-zippering activity. We identified three main roles for NSP6: first, to act as a filter in communication between the replication organelle and the ER, by allowing lipid flow but restricting the access of ER luminal proteins to the DMVs; second, to position and organize DMV clusters; and third, to mediate contact with lipid droplets (LDs) through the LD-tethering complex DFCP1-RAB18. NSP6 thus acts as an organizer of DMV clusters and can provide a selective means of refurbishing them with LD-derived lipids. Notably, both properly formed NSP6 connectors and LDs are required for the replication of SARS-CoV-2. Our findings provide insight into the biological activity of NSP6 of SARS-CoV-2 and of other coronaviruses, and have the potential to fuel the search for broad antiviral agents.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , COVID-19/virology , Carrier Proteins , Cell Line , Coronavirus Nucleocapsid Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Humans , Lipid Droplets , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Viral Nonstructural Proteins/metabolism , rab GTP-Binding Proteins
3.
Sci Rep ; 9(1): 12082, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427655

ABSTRACT

Endogenous reactive oxygen species (ROS) are by-products of the aerobic metabolism of cells and have an important signalling role as secondary messengers in various physiological processes, including cell growth and development. However, the excessive production of ROS, as well as the exposure to exogenous ROS, can cause protein oxidation, lipid peroxidation and DNA damages leading to cell injuries. ROS accumulation has been associated to the development of health disorders such as neurodegenerative and cardiovascular diseases, inflammatory bowel disease and cancer. We report that spores of strain SF185, a human isolate of Bacillus megaterium, have antioxidant activity on Caco-2 cells exposed to hydrogen peroxide and on a murine model of dextran sodium sulfate-induced oxidative stress. In both model systems spores exert a protective state due to their scavenging action: on cells, spores reduce the amount of intracellular ROS, while in vivo the pre-treatment with spores protects mice from the chemically-induced damages. Overall, our results suggest that treatment with SF185 spores prevents or reduces the damages caused by oxidative stress. The human origin of SF185, its strong antioxidant activity, and its protective effects led to propose the spore of this strain as a new probiotic for gut health.


Subject(s)
Bacillus megaterium/metabolism , DNA Damage/drug effects , Oxidative Stress/drug effects , Spores, Bacterial/chemistry , Animals , Bacillus megaterium/drug effects , Caco-2 Cells , Dextran Sulfate/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Mice , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Spores, Bacterial/drug effects , Spores, Bacterial/metabolism
4.
Sci Rep ; 9(1): 9059, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227764

ABSTRACT

The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.


Subject(s)
Adaptation, Physiological , Cytoplasmic Granules/physiology , Oxidative Stress , Y-Box-Binding Protein 1/metabolism , Zebrafish Proteins/metabolism , Animal Fins/metabolism , Animals , Cytoplasmic Granules/metabolism , Subcellular Fractions/metabolism , Zebrafish
5.
Pharmaceuticals (Basel) ; 12(2)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096606

ABSTRACT

Up until the first half of the 20th century, silver found significant employment in medical applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal properties. Wound repair is a complex and dynamic biological process regulated by several pathways that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity displaying less or no toxicity. However, the human health risks associated with exposure to silver nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in different cellular contexts. These potentially harmful effects of silver NP depend on various parameters including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm size, smaller than those previously tested. We found no adverse effect on the cell proliferation of HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence experiments demonstrated that this preparation of colloidal silver strongly increased cell migration, re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human cultured keratinocytes.

6.
Curr Biol ; 28(20): 3229-3243.e4, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30318355

ABSTRACT

How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.


Subject(s)
Cyprinidae/growth & development , DNA Repair , Evolution, Molecular , Fish Proteins/genetics , Zebrafish/growth & development , Animals , Cyprinidae/physiology , Darkness , Fish Proteins/metabolism , Zebrafish/physiology
7.
Genes (Basel) ; 9(10)2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30360431

ABSTRACT

The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of Np63 protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.

8.
J Ethnopharmacol ; 211: 285-294, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28964869

ABSTRACT

Uncaria tomentosa (Willd.) DC. (Rubiacee), also known as uña de gato, is a plant that grows wild in the upper Amazon region of Peru and has been widely used in folk medicine to treat several health conditions including cancer. We have produced an aqueous extract from Uncaria tomentosa (UT-ex) and analyzed its effects on squamous carcinoma cells and immortalized HaCaT keratinocytes. Squamous cell carcinoma (SCC) is an uncontrolled growth of abnormal cells arising in the skin's squamous layer of epidermis. When detected at an early stage, SCCs are almost curable, however, if left untreated, they can penetrate the underlying tissue and become disfiguring. We have evaluated cell proliferation, apoptosis and the level of reactive oxygen species following UT-ex treatment. UT-ex affected cell cycle progression and reduced cell viability in a dose and time-dependent manner. From a mechanistic point of view, this delay in cell growth coincided with the increase of reactive oxygen species (ROS). Furthermore, PARP1 cleavage was associated to the reduction of Y-box binding protein 1 (YB-1) 36kDa, a nuclear prosurvival factor involved in DNA damage repair. These data indicate that UT-ex-induced cell death can be ascribed, at least in part, to its ability both to induce oxidative DNA damage and antagonize the mechanism of DNA repair relying upon YB-1 activity. They also show that non metastatic SCCs are more susceptible to UT-ex treatment than untransformed keratinocytes supporting the use of UT-ex for the treatment of precancerous and early forms of squamous cell carcinomas. Preliminary chemical investigation of UT-ex revealed the presence of hydrophilic low-medium molecular weight metabolites with anticancer potential towards squamous carcinoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cat's Claw , Plant Extracts/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Keratinocytes/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism
9.
Exp Cell Res ; 352(2): 175-183, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28137539

ABSTRACT

The Wound Healing (WH) assay is widely used to investigate cell migration in vitro, in order to reach a better understanding of many physiological and pathological phenomena. Several experimental factors, such as uneven cell density among different samples, can affect the reproducibility and reliability of this assay, leading to a discrepancy in the wound closure kinetics among data sets corresponding to the same cell sample. We observed a linear relationship between the wound closure velocity and cell density, and suggested a novel methodological approach, based on transport phenomena concepts, to overcome this source of error on the analysis of the Wound Healing assay. In particular, we propose a simple scaling of the experimental data, based on the interpretation of the wound closure as a diffusion-reaction process. We applied our methodology to the MDA-MB-231 breast cancer cells, whose motility was perturbed by silencing or over-expressing genes involved in the control of cell migration. Our methodological approach leads to a significant improvement in the reproducibility and reliability in the in vitro WH assay.


Subject(s)
Cell Migration Assays/methods , Re-Epithelialization , Cell Line, Tumor , Cell Migration Assays/instrumentation , Cell Movement , Humans , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...