Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2498, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509063

ABSTRACT

T cell-based immunotherapies have exhibited promising outcomes in tumor control; however, their efficacy is limited in immune-excluded tumors. Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the tumor microenvironment and modulating immune infiltration. Despite the identification of distinct CAF subtypes using single-cell RNA-sequencing (scRNA-seq), their functional impact on hindering T-cell infiltration remains unclear, particularly in soft-tissue sarcomas (STS) characterized by low response rates to T cell-based therapies. In this study, we characterize the STS microenvironment using murine models (in female mice) with distinct immune composition by scRNA-seq, and identify a subset of CAFs we termed glycolytic cancer-associated fibroblasts (glyCAF). GlyCAF rely on GLUT1-dependent expression of CXCL16 to impede cytotoxic T-cell infiltration into the tumor parenchyma. Targeting glycolysis decreases T-cell restrictive glyCAF accumulation at the tumor margin, thereby enhancing T-cell infiltration and augmenting the efficacy of chemotherapy. These findings highlight avenues for combinatorial therapeutic interventions in sarcomas and possibly other solid tumors. Further investigations and clinical trials are needed to validate these potential strategies and translate them into clinical practice.


Subject(s)
Cancer-Associated Fibroblasts , Sarcoma , Soft Tissue Neoplasms , Female , Animals , Mice , Drug Resistance, Neoplasm , Sarcoma/drug therapy , Sarcoma/genetics , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Fibroblasts
2.
Nat Commun ; 13(1): 7243, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433954

ABSTRACT

Exonic circular RNAs (circRNAs) produce predominantly non-coding RNA species that have been recently profiled in many tumors. However, their functional contribution to cancer progression is still poorly understood. Here, we identify the circRNAs expressed in soft tissue sarcoma cells and explore how the circRNAs regulate sarcoma growth in vivo. We show that circCsnk1g3 and circAnkib1 promote tumor growth by shaping a pro-tumorigenic microenvironment, possibly due to their capabilities to regulate tumor-promoting elements extrinsic to the tumor cells. Accordingly, circCsnk1g3 and circAnkib1 can control the expression of interferon-related genes and pro-inflammatory factors in the sarcoma cells, thus directing immune cell recruitment into the tumor mass, and hence their activation. Mechanistically, circRNAs may repress pro-inflammatory elements by buffering activation of the pathways mediated by RIG-I, the cytosolic viral RNA sensor. The current findings suggest that the targeting of specific circRNAs could augment the efficacy of tumor and immune response to mainstay therapies.


Subject(s)
Carcinogenesis , Interferons , RNA, Circular , Sarcoma , Soft Tissue Neoplasms , Tumor Microenvironment , Humans , Carcinogenesis/genetics , Carcinogenesis/immunology , Interferons/genetics , Interferons/immunology , RNA, Circular/genetics , RNA, Circular/immunology , Sarcoma/genetics , Sarcoma/immunology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Casein Kinase I/genetics , Casein Kinase I/immunology
3.
Cell Rep ; 39(12): 110977, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732118

ABSTRACT

The standard of care is unsuccessful to treat recurrent and aggressive soft-tissue sarcomas. Interventions aimed at targeting components of the tumor microenvironment have shown promise for many solid tumors yet have been only marginally tested for sarcoma, partly because knowledge of the sarcoma microenvironment composition is limited. We employ single-cell RNA sequencing to characterize the immune composition of an undifferentiated pleiomorphic sarcoma mouse model, showing that macrophages in the sarcoma mass exhibit distinct activation states. Sarcoma cells use the pleiotropic cytokine macrophage migration inhibitory factor (MIF) to interact with macrophages expressing the CD74 receptor to switch macrophages' activation state and pro-tumorigenic potential. Blocking the expression of MIF in sarcoma cells favors the accumulation of macrophages with inflammatory and antigen-presenting profiles, hence reducing tumor growth. These data may pave the way for testing new therapies aimed at re-shaping the sarcoma microenvironment, in combination with the standard of care.


Subject(s)
Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Sarcoma , Soft Tissue Neoplasms , Animals , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Mice , RNA-Seq , Sarcoma/genetics , Tumor Microenvironment
4.
Nat Commun ; 13(1): 1487, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347124

ABSTRACT

Chemoimmunotherapy has recently failed to demonstrate significant clinical benefit in advanced bladder cancer patients; and the mechanism(s) underlying such suboptimal response remain elusive. To date, most studies have focused on tumor-intrinsic properties that render them "immune-excluded". Here, we explore an alternative, drug-induced mechanism that impedes therapeutic response via disrupting the onset of immunogenic cell death. Using two immune-excluded syngeneic mouse models of muscle-invasive bladder cancer (MIBC), we show that platinum-based chemotherapy diminishes CD8+ T cell tumor infiltration and constraines their antitumoral activity, despite expression of activation markers IFNγ and granzyme B. Mechanistically, chemotherapy induces the release of prostaglandin E2 (PGE2) from dying cancer cells, which is an inhibitory damage-associated molecular pattern (iDAMP) that hinderes dendritic cell maturation. Upon pharmaceutical blockade of PGE2 release, CD8+ T cells become tumoricidal and display an intraepithelial-infiltrating (or inflamed) pattern. This "iDAMP blockade" approach synergizes with chemotherapy and sensitizes bladder tumors towards anti-PD1 immune checkpoint inhibitor therapy. These findings provide a compelling rationale to evaluate this drug combination in future clinical trials.


Subject(s)
Urinary Bladder Neoplasms , Animals , CD8-Positive T-Lymphocytes , Cell Death , Humans , Immunotherapy , Mice , Prostaglandins E , Urinary Bladder Neoplasms/drug therapy
5.
Cancers (Basel) ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35053590

ABSTRACT

Circular RNAs (circRNAs) are regulatory RNAs which have recently been shown to have clinical significance in several diseases, including, but not limited to, various cancers, neurological diseases and cardiovascular diseases. The function of such regulatory RNAs is largely dependent on their subcellular localization. Several circRNAs have been shown to conduct antagonistic roles compared to the products of the linear isoforms, and thus need to be characterized distinctly from the linear RNAs. However, conventional fluorescent in situ hybridization (FISH) techniques cannot be employed directly to distinguish the signals from linear and circular isoforms because most circRNAs share the same sequence with the linear RNAs. In order to address this unmet need, we adapted the well-established method of single-molecule FISH by designing two sets of probes to differentiate the linear and circular RNA isoforms by virtue of signal colocalization. We call this method 'circular fluorescent in situ hybridization' (circFISH). Linear and circular RNAs were successfully visualized and quantified at a single-molecule resolution in fixed cells. RNase R treatment during the circFISH reduced the levels of linear RNAs while the circRNA levels remain unaltered. Furthermore, cells with shRNAs specific to circRNA showed the loss of circRNA levels, whereas the linear RNA levels were unaffected. The optimization of the in-situ RNase R treatment allowed the multiplexing of circFISH to combine it with organelle staining. CircFISH was found to be compatible with multiple sample types, including cultured cells and fresh-frozen and formalin-fixed tissue sections. Thus, we present circFISH as a versatile method for the simultaneous visualization and quantification of the distribution and localization of linear and circular RNA in fixed cells and tissue samples.

6.
Cancers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34831007

ABSTRACT

Cancer cells shed a heterogenous mixture of extracellular vesicles (EVs), differing in both size and composition, which likely influence physiological processes in different manners. However, how cells differentially control the shedding of these EV populations is poorly understood. Here, we show that miR-1227, which is enriched in prostate cancer EVs, compared to the cell of origin, but not in EVs derived from prostate benign epithelial cells, induces the shedding of large EVs (such as large oncosomes), while inhibiting the shedding of small EVs (such as exosomes). RNA sequencing from cells stably expressing miR-1227, a modified RISCTRAP assay that stabilizes and purifies mRNA-miR-1227 complexes for RNA sequencing, and in silico target prediction tools were used to identify miR-1227 targets that may mediate this alteration in EV shedding. The COPII vesicle protein SEC23A emerged and was validated by qPCR, WBlot, and luciferase assays as a direct target of miR-1227. The inhibition of SEC23A was sufficient to induce the shedding of large EVs. These results identify a novel mechanism of EV shedding, by which the inhibition of SEC23A by miR-1227 induces a shift in EV shedding, favoring the shedding of large EV over small EV.

7.
Cancer Cell ; 39(9): 1202-1213.e6, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34329585

ABSTRACT

Studies suggest that the efficacy of cancer chemotherapy and immunotherapy is influenced by intestinal bacteria. However, the influence of the microbiome on radiation therapy is not as well understood, and the microbiome comprises more than bacteria. Here, we find that intestinal fungi regulate antitumor immune responses following radiation in mouse models of breast cancer and melanoma and that fungi and bacteria have opposite influences on these responses. Antibiotic-mediated depletion or gnotobiotic exclusion of fungi enhances responsiveness to radiation, whereas antibiotic-mediated depletion of bacteria reduces responsiveness and is associated with overgrowth of commensal fungi. Further, elevated intratumoral expression of Dectin-1, a primary innate sensor of fungi, is negatively associated with survival in patients with breast cancer and is required for the effects of commensal fungi in mouse models of radiation therapy.


Subject(s)
Antifungal Agents/administration & dosage , Bacteria/classification , Breast Neoplasms/therapy , Fungi/drug effects , Lectins, C-Type/genetics , Melanoma/therapy , Animals , Antifungal Agents/pharmacology , Bacteria/immunology , Breast Neoplasms/immunology , Breast Neoplasms/microbiology , Combined Modality Therapy , Down-Regulation , Female , Fungi/classification , Fungi/immunology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Melanoma/immunology , Melanoma/microbiology , Mice , Symbiosis , T-Lymphocytes/metabolism , Tumor-Associated Macrophages/metabolism , Up-Regulation/drug effects , Up-Regulation/radiation effects , Xenograft Model Antitumor Assays
9.
Cell Res ; 29(8): 628-640, 2019 08.
Article in English | MEDLINE | ID: mdl-31209250

ABSTRACT

circRNAs arise from back splicing events during mRNA processing, and when deregulated can play an active role in cancer. Here we characterize a new circRNA (circPOK) encoded by the Zbtb7a gene (also kown as POKEMON, LRF) in the context of mesenchymal tumor progression. circPOK functions as a non-coding proto-oncogenic RNA independently and antithetically to its linear transcript counterpart, which acts as a tumor suppressor by encoding the Pokemon transcription factor. We find that circPOK regulates pro-proliferative and pro-angiogenic factors by co-activation of the ILF2/3 complex. Importantly, the expression of Pokemon protein and circRNA is aberrantly uncoupled in cancer through differential post-transcriptional regulation. Thus, we identify a novel type of genetic unit, the iRegulon, that yields biochemically distinct RNA products, circular and linear, with diverse and antithetical functions. Our findings further expand the cellular repertoire towards the control of normal biological outputs, while aberrant expression of such components may underlie disease pathogenesis including cancer.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/genetics , RNA, Circular/genetics , Sarcoma/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exons , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , HEK293 Cells , Humans , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogenes/genetics , RNA, Small Interfering/genetics , Sarcoma/pathology , Transcription Factors/metabolism , Transfection
10.
Cell Res ; 29(6): 446-459, 2019 06.
Article in English | MEDLINE | ID: mdl-31024166

ABSTRACT

Although targeted therapies have proven effective and even curative in human leukaemia, resistance often ensues. IDH enzymes are mutated in ~20% of human AML, with targeted therapies under clinical evaluation. We here characterize leukaemia evolution from mutant IDH2 (mIDH2)-dependence to independence identifying key targetable vulnerabilities of mIDH2 leukaemia that are retained during evolution and progression from early to late stages. Mechanistically, we find that mIDH2 leukaemia are metastable and vulnerable at two distinct levels. On the one hand, they are characterized by oxidative and genotoxic stress, in spite of increased 1-carbon metabolism and glutathione levels. On the other hand, mIDH2 leukaemia display inhibition of LSD1 and a resulting transcriptional signature of all-trans retinoic acid (ATRA) sensitization, in spite of a state of suppressed ATRA signalling due to increased levels of PIN1. We further identify GSH/ROS and PIN1/LSD1 as critical nodes for leukaemia maintenance and the combination of ATRA and arsenic trioxide (ATO) as a key therapeutic modality to target these vulnerabilities. Strikingly, we demonstrate that the combination of ATRA and ATO proves to be a powerfully synergistic and effective therapy in a number of mouse and human mIDH1/2 leukemic models. Thus, our findings pave the way towards the treatment of a sizable fraction of human AMLs through targeted APL-like combinatorial therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Arsenic Trioxide/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Promyelocytic, Acute/drug therapy , Tretinoin/pharmacology , Animals , Disease Models, Animal , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Tumor Cells, Cultured , U937 Cells
11.
Nat Commun ; 9(1): 66, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302031

ABSTRACT

Disease recurrence after therapy, due to the persistence of resistant leukemic cells, represents a fundamental problem in the treatment of leukemia. Elucidating the mechanisms responsible for the maintenance of leukemic cells, before and after treatment, is therefore critical to identify curative modalities. It has become increasingly clear that cell-autonomous mechanisms are not solely responsible for leukemia maintenance. Here, we report a role for Pml in mesenchymal stem cells (MSCs) in supporting leukemic cells of both CML and AML. Mechanistically, we show that Pml regulates pro-inflammatory cytokines within MSCs, and that this function is critical in sustaining CML-KLS and AML ckit+ leukemic cells non-cell autonomously.


Subject(s)
Leukemia/metabolism , Mesenchymal Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Promyelocytic Leukemia Protein/metabolism , Stem Cell Niche , Acute Disease , Animals , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Promyelocytic Leukemia Protein/genetics
12.
Cell Res ; 27(12): 1401-1402, 2017 12.
Article in English | MEDLINE | ID: mdl-29086764

ABSTRACT

Circular RNAs (circRNAs) are a novel class of RNA whose physiological function has yet to be investigated. A recent publication in Science provides the first evidence of the biological relevance of a circRNA in an in vivo model and unveils an unexpected twist on their crosstalk with miRNAs.


Subject(s)
MicroRNAs , Animals , Brain , Mammals , RNA
13.
Mol Cell ; 63(6): 1006-20, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27635760

ABSTRACT

While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Leukemia, Myeloid, Acute/metabolism , Proline/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/genetics , Amino Acid Sequence , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred NOD , Models, Molecular , Neoplasm Transplantation , Oxidation-Reduction , Proline/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Structural Homology, Protein , Survival Analysis
15.
Cell ; 165(2): 289-302, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27040497

ABSTRACT

Chromosomal translocations encode oncogenic fusion proteins that have been proven to be causally involved in tumorigenesis. Our understanding of whether such genomic alterations also affect non-coding RNAs is limited, and their impact on circular RNAs (circRNAs) has not been explored. Here, we show that well-established cancer-associated chromosomal translocations give rise to fusion circRNAs (f-circRNA) that are produced from transcribed exons of distinct genes affected by the translocations. F-circRNAs contribute to cellular transformation, promote cell viability and resistance upon therapy, and have tumor-promoting properties in in vivo models. Our work expands the current knowledge regarding molecular mechanisms involved in cancer onset and progression, with potential diagnostic and therapeutic implications.


Subject(s)
Neoplasms/genetics , RNA/metabolism , Translocation, Genetic , Animals , Base Sequence , Cell Proliferation , Cell Transformation, Neoplastic , Humans , Leukemia/genetics , Mice , Molecular Sequence Data , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , RNA, Circular
16.
Nat Med ; 21(5): 457-66, 2015 May.
Article in English | MEDLINE | ID: mdl-25849135

ABSTRACT

A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency for inhibiting Pin1 function in vivo. By using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but whose drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the protein encoded by the fusion oncogene PML-RARA and treats APL in APL cell and animal models as well as in human patients. ATRA-induced Pin1 ablation also potently inhibits triple-negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Leukemic , Gene Expression Regulation, Neoplastic , Leukemia, Promyelocytic, Acute/metabolism , Peptidylprolyl Isomerase/genetics , Tretinoin/metabolism , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/genetics , Catalysis , Catalytic Domain , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Fibroblasts/metabolism , HEK293 Cells , Humans , Leukemia, Promyelocytic, Acute/genetics , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Knockout , NIMA-Interacting Peptidylprolyl Isomerase , Neoplasm Transplantation , Phosphates/chemistry , Phosphorylation , Proline/chemistry , Triple Negative Breast Neoplasms/metabolism
17.
Cancer Discov ; 5(5): 550-63, 2015 May.
Article in English | MEDLINE | ID: mdl-25653093

ABSTRACT

UNLABELLED: The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. SIGNIFICANCE: Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA Damage , Protein Kinases/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Animals , Binding Sites , Cell Line, Tumor , Checkpoint Kinase 1 , Conserved Sequence , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Progression , Down-Regulation , Drug Resistance, Neoplasm/genetics , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic , Genotype , Humans , Male , Mice , Mice, Knockout , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Kinases/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Regulator ERG , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
Cancer Discov ; 5(4): 396-409, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25614485

ABSTRACT

UNLABELLED: The regulatory factors governing adult mesenchymal stem cell (MSC) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal forms of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here, we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSC transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF-DLK1-SOX9 pathway in the pathogenesis of undifferentiated sarcoma, with important therapeutic implications. SIGNIFICANCE: The paucity of therapeutic options for the treatment of sarcoma calls for a rapid and effective preclinical assessment of new therapeutic modalities. We have here developed a new platform to deconstruct the molecular genetics underlying the pathogenesis of sarcoma and to evaluate in vivo the efficacy of novel targeted therapies.


Subject(s)
Cell Transformation, Neoplastic/genetics , Mesenchymal Stem Cells/metabolism , Models, Biological , Sarcoma/genetics , Sarcoma/pathology , Adult , Animals , Calcium-Binding Proteins , Cell Culture Techniques , Cell Differentiation , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/cytology , Mice , Mice, Knockout , Mice, Transgenic , Phenotype , Sarcoma/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
19.
Stem Cell Reports ; 2(6): 794-809, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24936467

ABSTRACT

Maintenance and differentiation of hematopoietic stem cells (HSCs) is regulated through cell-autonomous and non-cell-autonomous mechanisms within specialized bone marrow microenvironments. Recent evidence demonstrates that signaling by HIF-1α contributes to cell-autonomous regulation of HSC maintenance. By investigating the role of HIF factors in bone marrow mesenchymal progenitors, we found that murine endosteal mesenchymal progenitors express high levels of HIF-1α and HIF-2α and proliferate preferentially in hypoxic conditions ex vivo. Inactivation of either HIF-1α or HIF-2α dramatically affects their phenotype, propagation, and differentiation. Also, downregulation of HIF factors provokes an increase in interferon-responsive genes and triggers expansion and differentiation of hematopoietic progenitors by a STAT1-mediated mechanism. Interestingly, in conditions of demand-driven hematopoiesis HIF factors are specifically downregulated in mesenchymal progenitors in vivo. In conclusion, our findings indicate that HIF factors also regulate hematopoiesis non-cell-autonomously by preventing activation of a latent program in mesenchymal progenitors that promotes hematopoiesis.


Subject(s)
Bone Marrow Cells/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Hematopoiesis/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mesenchymal Stem Cells/cytology , Mice , Signal Transduction/physiology
20.
EMBO Mol Med ; 6(5): 640-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24711541

ABSTRACT

Acute promyelocytic leukemia (APL) is epitomized by the chromosomal translocation t(15;17) and the resulting oncogenic fusion protein PML-RARα. Although acting primarily as a transcriptional repressor, PML-RARα can also exert functions of transcriptional co-activation. Here, we find that PML-RARα stimulates transcription driven by HIF factors, which are critical regulators of adaptive responses to hypoxia and stem cell maintenance. Consistently, HIF-related gene signatures are upregulated in leukemic promyelocytes from APL patients compared to normal promyelocytes. Through in vitro and in vivo studies, we find that PML-RARα exploits a number of HIF-1α-regulated pro-leukemogenic functions that include cell migration, bone marrow (BM) neo-angiogenesis and self-renewal of APL blasts. Furthermore, HIF-1α levels increase upon treatment of APL cells with all-trans retinoic acid (ATRA). As a consequence, inhibiting HIF-1α in APL mouse models delays leukemia progression and exquisitely synergizes with ATRA to eliminate leukemia-initiating cells (LICs).


Subject(s)
Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Promyelocytic, Acute/physiopathology , Nuclear Proteins/metabolism , Receptors, Retinoic Acid/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Physiological Phenomena , Disease Models, Animal , Humans , Mice , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein , Receptors, Retinoic Acid/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recurrence , Retinoic Acid Receptor alpha , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL