Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(12): 124117, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003748

ABSTRACT

We present our blind prediction of the toluene-water partition coefficients in the context of the SAMPL9 challenge. For the calculation of the solvation free energies in water, toluene, and 1-octanol, we used an efficient MD-based nonequilibrium alchemical technique relying on the GAFF2 non-polarizable force field. The method is based on the fast-growth of an initially decoupled solute. Canonical sampling of the associated end-state is efficiently obtained by performing a Hamiltonian replica exchange simulation of the gas-phase solute molecule alone, combined with equilibrium configurations of the solvent. Before submitting the prediction, a pre-assessment of the method and of the force field was made by comparing with the known experimental counterpart the calculated octanol-water partition coefficients using different set of atomic charges. The analysis allowed to optimize our blind prediction for the toluene-water partition coefficients, providing at the same time valid clues for improving the performance and reliability of the non-polarizable force field in free energy calculations of drug-receptor systems.

2.
J Chem Phys ; 156(16): 164104, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35490003

ABSTRACT

We present our blind predictions for the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL), ninth challenge, focusing on the binding of WP6 (carboxy-pillar[6]arene) with ammonium/diammonium cationic guests. Host-guest binding free energies have been calculated using the recently developed virtual double system single box approach, based on the enhanced sampling of the bound and unbound end-states followed by fast switching nonequilibrium alchemical simulations [M. Macchiagodena et al., J. Chem. Theory Comput. 16, 7160 (2020)]. As far as Pearson and Kendall coefficients are concerned, performances were acceptable and, in general, better than those we submitted for calixarenes, cucurbituril-like open cavitand, and beta-cyclodextrines in previous SAMPL host-guest challenges, confirming the reliability of nonequilibrium approaches for absolute binding free energy calculations. In comparison with previous submissions, we found a rather large mean signed error that we attribute to the way the finite charge correction was addressed through the assumption of a neutralizing background plasma.


Subject(s)
Molecular Dynamics Simulation , Proteins , Entropy , Ligands , Reproducibility of Results , Thermodynamics
3.
J Comput Aided Mol Des ; 35(1): 37-47, 2021 01.
Article in English | MEDLINE | ID: mdl-33392950

ABSTRACT

In the context of the SAMPL7 challenge, we computed, employing a non-equilibrium (NE) alchemical technique, the standard binding free energy of two series of host-guest systems, involving as a host the Isaac's TrimerTrip, a Cucurbituril-like open cavitand, and the Gilson's Cyclodextrin derivatives. The adopted NE alchemy combines enhanced sampling molecular dynamics simulations with driven fast out-of-equilibrium alchemical trajectories to recover the free energy via the Jarzynski and Crooks NE theorems. The GAFF2 non-polarizable force field was used for the parametrization. Performances were acceptable and similar in accuracy to those we submitted for Gibb's Deep Cavity Cavitands in the previous SAMPL6 host-guest challenge, confirming the reliability of the computational approach and exposing, in some cases, some important deficiencies of the GAFF2 non-polarizable force field.


Subject(s)
Algorithms , Pharmaceutical Preparations/chemistry , Receptors, Drug/chemistry , Software , Thermodynamics , Humans , Models, Molecular , Pharmaceutical Preparations/metabolism , Protein Binding , Receptors, Drug/metabolism
4.
J Chem Theory Comput ; 16(11): 7160-7172, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33090785

ABSTRACT

In the context of drug-receptor binding affinity calculations using molecular dynamics techniques, we implemented a combination of Hamiltonian replica exchange (HREM) and a novel nonequilibrium alchemical methodology, called virtual double-system single-box, with increased accuracy, precision, and efficiency with respect to the standard nonequilibrium approaches. The method has been applied for the determination of absolute binding free energies of 16 newly designed noncovalent ligands of the main protease (3CLpro) of SARS-CoV-2. The core structures of 3CLpro ligands were previously identified using a multimodal structure-based ligand design in combination with docking techniques. The calculated binding free energies for four additional ligands with known activity (either for SARS-CoV or SARS-CoV-2 main protease) are also reported. The nature of binding in the 3CLpro active site and the involved residues besides the CYS-HYS catalytic dyad have been thoroughly characterized by enhanced sampling simulations of the bound state. We have identified several noncongeneric compounds with predicted low micromolar activity for 3CLpro inhibition, which may constitute possible lead compounds for the development of antiviral agents in Covid-19 treatment.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/metabolism , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Ligands , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protein Binding , SARS-CoV-2 , User-Computer Interface , Viral Nonstructural Proteins/antagonists & inhibitors
5.
Chem Commun (Camb) ; 56(62): 8854-8856, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32633733

ABSTRACT

Using a combination of enhanced sampling molecular dynamics techniques and non-equilibrium alchemical transformations with full atomistic details, we have shown that hydroxychloroquine (HCQ) may act as a mild inhibitor of important functional proteins for SARS-CoV2 replication, with potency increasing in the series PLpro, 3CLpro, RdRp. By analyzing the bound state configurations, we were able to improve the potency for the 3CLpro target, designing a novel HCQ-inspired compound, named PMP329, with predicted nanomolar activity. If confirmed in vitro, our results provide a molecular rationale for the use of HCQ or of strictly related derivatives in the treatment of Covid-19.


Subject(s)
Cysteine Endopeptidases/metabolism , Hydroxychloroquine/metabolism , Molecular Dynamics Simulation , Papain/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus Papain-Like Proteases , Cysteine Endopeptidases/chemistry , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/therapeutic use , Pandemics , Papain/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
6.
J Comput Aided Mol Des ; 34(4): 371-384, 2020 04.
Article in English | MEDLINE | ID: mdl-31624982

ABSTRACT

In this paper, we compute, by means of a non equilibrium alchemical technique, the water-octanol partition coefficients (LogP) for a series of drug-like compounds in the context of the SAMPL6 challenge initiative. Our blind predictions are based on three of the most popular non-polarizable force fields, CGenFF, GAFF2, and OPLS-AA and are critically compared to other MD-based predictions produced using free energy perturbation or thermodynamic integration approaches with stratification. The proposed non-equilibrium method emerges has a reliable tool for LogP prediction, systematically being among the top performing submissions in all force field classes for at least two among the various indicators such as the Pearson or the Kendall correlation coefficients or the mean unsigned error. Contrarily to the widespread equilibrium approaches, that yielded apparently very disparate results in the SAMPL6 challenge, all our independent prediction sets, irrespective of the adopted force field and of the adopted estimate (unidirectional or bidirectional) are, mutually, from moderately to strongly correlated.


Subject(s)
Octanols/chemistry , Thermodynamics , Water/chemistry , Entropy , Molecular Dynamics Simulation , Solvents/chemistry
7.
J Comput Aided Mol Des ; 32(10): 965-982, 2018 10.
Article in English | MEDLINE | ID: mdl-30128927

ABSTRACT

In this paper, we compute, by means of a non equilibrium alchemical technique, called fast switching double annihilation methods (FSDAM), the absolute standard dissociation free energies of the the octa acids host-guest systems in the SAMPL6 challenge initiative. FSDAM is based on the production of canonical configurations of the bound and unbound states via enhanced sampling and on the subsequent generation of hundreds of fast non-equilibrium ligand annihilation trajectories. The annihilation free energies of the ligand when bound to the receptor and in bulk solvent are obtained from the collection of work values using an estimate based on the Crooks theorem for driven non equilibrium processes. The FSDAM blind prediction, relying on the normality assumption for the annihilation work distributions, ranked fairly well among the submitted blind predictions that were not adjusted with a linear corrections obtained from retrospective data on similar host guest systems. Improved results for FSDAM can be obtained by post-processing the work data assuming mixtures of normal components.


Subject(s)
Carboxylic Acids/chemistry , Proteins/chemistry , Computer Simulation , Ligands , Molecular Structure , Protein Binding , Software , Solvents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...