Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dev Biol ; 12(2)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38651456

ABSTRACT

During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate. In this paper, we describe the serum-dependent conversion of the dually lipidated cellular precursor into a soluble cholesteroylated variant (ShhC) during its release. Although ShhC is formed in a Dispatched- and Scube2-dependent manner, suggesting the physiological relevance of the protein, the depalmitoylation of ShhC during release is inconsistent with the previously postulated function of N-palmitate in Ptch receptor binding and signaling. Therefore, we analyzed the potency of ShhC to induce Ptch-controlled target cell transcription and differentiation in Hh-sensitive reporter cells and in the Drosophila eye. In both experimental systems, we found that ShhC was highly bioactive despite the absence of the N-palmitate. We also found that the artificial removal of N-terminal peptides longer than eight amino acids inactivated the depalmitoylated soluble proteins in vitro and in the developing Drosophila eye. These results demonstrate that N-depalmitoylated ShhC requires an N-peptide of a defined minimum length for its signaling function to Ptch.

2.
Biochem Soc Trans ; 51(3): 983-993, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37222258

ABSTRACT

Patterns of gene expression, cell growth and cell-type specification during development are often regulated by morphogens. Morphogens are signalling molecules produced by groups of source cells located tens to hundreds of micrometers distant from the responding tissue and are thought to regulate the fate of receiving cells in a direct, concentration-dependent manner. The mechanisms that underlie scalable yet robust morphogen spread to form the activity gradient, however, are not well understood and are currently intensely debated. Here, based on two recent publications, we review two in vivo derived concepts of regulated gradient formation of the morphogen Hedgehog (Hh). In the first concept, Hh disperses on the apical side of developing epithelial surfaces using the same mechanistic adaptations of molecular transport that DNA-binding proteins in the nucleus use. In the second concept, Hh is actively conveyed to target cells via long filopodial extensions, called cytonemes. Both concepts require the expression of a family of sugar-modified proteins in the gradient field called heparan sulphate proteoglycans as a prerequisite for Hh dispersal, yet propose different - direct versus indirect - roles of these essential extracellular modulators.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Glycosaminoglycans/metabolism , Hedgehog Proteins/metabolism , Morphogenesis/physiology , Signal Transduction/physiology , Drosophila melanogaster/metabolism
3.
Front Mol Biosci ; 10: 1130064, 2023.
Article in English | MEDLINE | ID: mdl-36911531

ABSTRACT

Morphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the Drosophila wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner. To answer this question, we systematically screened two composite Hh binding areas for HS in vitro and expressed mutated proteins in the Drosophila wing disc. We found that selectively impaired HS binding of the second site reduced Hh signaling close to the source and caused striking wing mispatterning phenotypes more distant from the source. These observations suggest that HS constrains Hh to the wing disc epithelium in a direct manner, and that interfering with this constriction converts Hh into freely diffusing forms with altered signaling ranges and impaired gradient robustness.

4.
Nat Commun ; 14(1): 758, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765094

ABSTRACT

Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Heparitin Sulfate/metabolism , Drosophila/metabolism , Binding Sites , Drosophila melanogaster/metabolism , Wings, Animal
5.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34308968

ABSTRACT

The Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding. We also show that cholesterol export from Disp-deficient cells is reduced, that these cells contain increased cholesterol amounts in the plasma membrane, and that Shh shedding from Disp-deficient cells is restored by pharmacological membrane cholesterol extraction and by overexpression of transgenic Disp or the structurally related protein Patched 1 (Ptc, also known as Ptch1; a putative cholesterol transporter). These data suggest that Disp can regulate Shh function via controlled cell surface shedding and that membrane cholesterol-related molecular mechanisms shared by Disp and Ptc exercise such sheddase control.


Subject(s)
Cell Membrane , Cholesterol , Hedgehog Proteins , Membrane Transport Proteins/genetics , Cells, Cultured , Hedgehog Proteins/genetics , Humans , Ligands , Signal Transduction
6.
Bioessays ; 43(11): e2100133, 2021 11.
Article in English | MEDLINE | ID: mdl-34611914

ABSTRACT

Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.


Subject(s)
Drosophila Proteins , Hedgehog Proteins , Cholesterol , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Protein Processing, Post-Translational , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL