Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Am J Physiol Cell Physiol ; 325(4): C1131-C1143, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37694284

ABSTRACT

Metformin-induced glycolysis and lactate production can lead to acidosis as a life-threatening side effect, but slight increases in blood lactate levels in a physiological range were also reported in metformin-treated patients. However, how metformin increases systemic lactate concentrations is only partly understood. Because human skeletal muscle has a high capacity to produce lactate, the aim was to elucidate the dose-dependent regulation of metformin-induced lactate production and the potential contribution of skeletal muscle to blood lactate levels under metformin treatment. This was examined by using metformin treatment (16-776 µM) of primary human myotubes and by 17 days of metformin treatment in humans. As from 78 µM, metformin induced lactate production and secretion and glucose consumption. Investigating the cellular redox state by mitochondrial respirometry, we found metformin to inhibit the respiratory chain complex I (776 µM, P < 0.01) along with decreasing the [NAD+]:[NADH] ratio (776 µM, P < 0.001). RNA sequencing and phospho-immunoblot data indicate inhibition of pyruvate oxidation mediated through phosphorylation of the pyruvate dehydrogenase (PDH) complex (39 µM, P < 0.01). On the other hand, in human skeletal muscle, phosphorylation of PDH was not altered by metformin. Nonetheless, blood lactate levels were increased under metformin treatment (P < 0.05). In conclusion, the findings suggest that metformin-induced inhibition of pyruvate oxidation combined with altered cellular redox state shifts the equilibrium of the lactate dehydrogenase (LDH) reaction leading to a dose-dependent lactate production in primary human myotubes.NEW & NOTEWORTHY Metformin shifts the equilibrium of lactate dehydrogenase (LDH) reaction by low dose-induced phosphorylation of pyruvate dehydrogenase (PDH) resulting in inhibition of pyruvate oxidation and high dose-induced increase in NADH, which explains the dose-dependent lactate production of differentiated human skeletal muscle cells.


Subject(s)
Lactic Acid , Metformin , Humans , Lactic Acid/metabolism , Metformin/pharmacology , NAD/metabolism , Oxidation-Reduction , Muscle Fibers, Skeletal/metabolism , Pyruvates , Oxidoreductases/metabolism , Lactate Dehydrogenases/metabolism
2.
Diabetes ; 72(7): 857-871, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37074686

ABSTRACT

The ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise, and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation. Female TBC1D4-S711A mice exhibited normal growth and eating behavior as well as intact whole-body glycemic control on chow and high-fat diets. Moreover, muscle contraction increased glucose uptake, glycogen utilization, and AMPK activity similarly in wild-type and TBC1D4-S711A mice. In contrast, improvements in whole-body and muscle insulin sensitivity after exercise and contractions were only evident in wild-type mice and occurred concomitantly with enhanced phosphorylation of TBC1D4-S711. These results provide genetic evidence to support that TBC1D4-S711 serves as a major point of convergence for AMPK- and insulin-induced signaling that mediates the insulin-sensitizing effect of exercise and contractions on skeletal muscle glucose uptake.


Subject(s)
Glucose , Insulin , Female , Mice , Animals , Insulin/pharmacology , Insulin/metabolism , Glucose/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Muscle, Skeletal/metabolism , Insulin, Regular, Human/pharmacology , Phosphorylation , Muscle Contraction
3.
Exp Gerontol ; 172: 112046, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521568

ABSTRACT

Aging has been suggested to be associated with changes in oxidative capacity, autophagy, and mitophagy in the liver, but a simultaneous evaluation of these key cellular processes is lacking. Moreover, skeletal muscle transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α has been reported to mediate inter-organ signaling through myokines with regulatory effects in the liver, but the potential role of muscle PGC-1α on hepatic changes with age remains to be resolved. The aim of the present study was therefore to investigate 1) the effect of aging on mitochondrial autophagy and mitophagy capacity in mouse liver and 2) whether muscle PGC-1α is required for maintaining autophagy and mitophagy capacity in the liver during aging. The liver was obtained from young (Young) and aged (Aged) inducible muscle-specific PGC-1α knockout (iMKO) and floxed littermate control mice (Lox). Aging increased liver p62, Parkin and BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP)3 protein with no effect of muscle specific PGC-1α knockout, while liver Microtubule-associated protein 1A/1B-light chain 3(LC3) II/I was unchanged with age, but tended to be lower in iMKO mice than in controls. Markers of liver mitochondrial oxidative capacity and oxidative stress were unchanged with age and iMKO. However, Parkin protein levels in isolated liver mitochondria were 2-fold higher in Aged iMKO mice than in Aged controls. In conclusion, aging had no effect on oxidative capacity and lipid peroxidation in the liver. However, aging was associated with increased levels of autophagy and mitophagy markers. Moreover, muscle PGC-1α appears to regulate hepatic mitochondrial translocation of Parkin in aged mice, suggesting that the metabolic capacity of skeletal muscle can modulate mitophagy regulation in the liver during aging.


Subject(s)
Mitophagy , Muscle, Skeletal , Animals , Mice , Aging/physiology , Liver/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
J Gerontol A Biol Sci Med Sci ; 78(3): 373-383, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35961318

ABSTRACT

Aging is associated with metabolic decline in skeletal muscle, which can be delayed by physical activity. Moreover, both lifelong and short-term exercise training have been shown to prevent age-associated fragmentation of the mitochondrial network in mouse skeletal muscle. However, whether lifelong endurance exercise training exerts the same effects in human skeletal muscle is still not clear. Therefore, the aim of the present study was to examine the effect of volume-dependent lifelong endurance exercise training on mitochondrial function and network connectivity in older human skeletal muscle. Skeletal muscle complex I+II-linked mitochondrial respiration per tissue mass was higher, but intrinsic complex I+II-linked mitochondrial respiration was lower in highly trained older subjects than in young untrained, older untrained, and older moderately trained subjects. Mitochondrial volume and connectivity were higher in highly trained older subjects than in untrained and moderately trained older subjects. Furthermore, the protein content of the ADP/ATP exchangers ANT1 + 2 and VDAC was higher and of the mitophagic marker parkin lower in skeletal muscle from the highly trained older subjects than from untrained and moderately trained older subjects. In contrast, H2O2 emission in skeletal muscle was not affected by either age or exercise training, but SOD2 protein content was higher in highly trained older subjects than in untrained and moderately trained older subjects. This suggests that healthy aging does not induce oxidative stress or mitochondrial network fragmentation in human skeletal muscle, but high-volume exercise training increases mitochondrial volume and network connectivity, thereby increasing oxidative capacity in older human skeletal muscle.


Subject(s)
Exercise , Hydrogen Peroxide , Animals , Mice , Humans , Aged , Hydrogen Peroxide/metabolism , Exercise/physiology , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Aging/physiology , Physical Endurance/physiology , Mitochondria, Muscle/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 1037948, 2022.
Article in English | MEDLINE | ID: mdl-36545337

ABSTRACT

Objective: Growth differentiation factor (GDF)-15 is implicated in regulation of metabolism and circulating GDF15 increases in response to exercise. The source and regulation of the exercise-induced increase in GDF15 is, however not known. Method: Plasma GDF15 was measured by ELISA under the following conditions: 1) Arterial-to-hepatic venous differences sampled before, during, and after exercise in healthy male subjects (n=10); 2) exogenous glucagon infusion compared to saline infusion in resting healthy subjects (n=10); 3) an acute exercise bout with and without a pancreatic clamp (n=6); 4) healthy subjects for 36 hours (n=17), and 5) patients with anorexia nervosa (n=25) were compared to healthy age-matched subjects (n=25). Tissue GDF15 mRNA content was determined in mice in response to exhaustive exercise (n=16). Results: The splanchnic bed released GDF15 to the circulation during exercise and increasing the glucagon-to-insulin ratio in resting humans led to a 2.7-fold (P<0.05) increase in circulating GDF15. Conversely, inhibiting the exercise-induced increase in the glucagon-to-insulin ratio blunted the exercise-induced increase in circulating GDF15. Fasting for 36 hours did not affect circulating GDF15, whereas resting patients with anorexia nervosa displayed elevated plasma concentrations (1.4-fold, P<0.05) compared to controls. In mice, exercise increased GDF15 mRNA contents in liver, muscle, and adipose tissue. Conclusion: In humans, GDF15 is a "hepatokine" which increases during exercise and is at least in part regulated by the glucagon-to-insulin ratio. Moreover, chronic energy deprivation is associated with elevated plasma GDF15, which supports that GDF15 is implicated in metabolic signalling in humans.


Subject(s)
Glucagon , Insulin , Humans , Male , Mice , Animals , Insulin/metabolism , Glucagon/metabolism , Pancreatic Hormones , Pancreas/metabolism , RNA, Messenger , Growth Differentiation Factor 15/metabolism
6.
J Gerontol A Biol Sci Med Sci ; 77(6): 1101-1111, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34875059

ABSTRACT

Growing old is patently among the most prominent risk factors for lifestyle-related diseases and deterioration in physical performance. Aging in particular affects mitochondrial homeostasis, and maintaining a well-functioning mitochondrial pool is imperative in order to avoid age-associated metabolic decline. White adipose tissue (WAT) is a key organ in energy balance, and impaired mitochondrial function in adipocytes has been associated with increased low-grade inflammation, altered metabolism, excessive reactive oxygen species (ROS) production, and an accelerated aging phenotype. Exercise training improves mitochondrial health but whether lifelong exercise training can sufficiently maintain WAT mitochondrial function is currently unknown. Therefore, to dissect the role and dose-dependence of lifelong exercise training on aging WAT metabolic parameters and mitochondrial function, young and older untrained, as well as moderately and highly exercise trained older male subjects were recruited and abdominal subcutaneous (s)WAT biopsies and venous blood samples were obtained to measure mitochondrial function and key metabolic factors in WAT and plasma. Mitochondrial intrinsic respiratory capacity was lower in sWAT from older than from young subjects. In spite of this, maximal mitochondrial respiration per wet weight, markers of oxidative capacity, and mitophagic capacity were higher in sWAT from the lifelong highly exercise trained group than all other groups. Furthermore, ROS emission was generally lower in sWAT from lifelong highly exercise trained subjects than older untrained subjects. Taken together, aging reduces intrinsic mitochondrial respiration in human sWAT, but lifelong high-volume exercise training increases oxidative capacity by increasing mitochondrial volume likely contributing to healthy aging.


Subject(s)
Healthy Aging , Adipose Tissue, White/metabolism , Exercise , Humans , Male , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
7.
Diabetologia ; 63(12): 2641-2653, 2020 12.
Article in English | MEDLINE | ID: mdl-32945898

ABSTRACT

AIMS/HYPOTHESIS: Growth hormone (GH) causes insulin resistance that is linked to lipolysis, but the underlying mechanisms are unclear. We investigated if GH-induced insulin resistance in skeletal muscle involves accumulation of diacylglycerol (DAG) and ceramide as well as impaired insulin signalling, or substrate competition between fatty acids and glucose. METHODS: Nine GH-deficient male participants were randomised and examined in a 2 × 2 factorial design with and without administration of GH and acipimox (an anti-lipolytic compound). As-treated analyses were performed, wherefore data from three visits from two patients were excluded due to incorrect GH administration. The primary outcome was insulin sensitivity, expressed as the AUC of the glucose infusion rate (GIRAUC), and furthermore, the levels of DAGs and ceramides, insulin signalling and the activity of the active form of pyruvate dehydrogenase (PDHa) were assessed in skeletal muscle biopsies obtained in the basal state and during a hyperinsulinaemic-euglycaemic clamp (HEC). RESULTS: Co-administration of acipimox completely suppressed the GH-induced elevation in serum levels of NEFA (GH versus GH+acipimox, p < 0.0001) and abrogated GH-induced insulin resistance (mean GIRAUC [95% CI] [mg min-1 kg-1] during the HEC: control, 595 [493, 718]; GH, 468 [382, 573]; GH+acipimox, 654 [539, 794]; acipimox, 754 [618, 921]; GH vs GH+acipimox: p = 0.004). GH did not significantly change either the accumulation of DAGs and ceramides or insulin signalling in skeletal muscle, but GH antagonised the insulin-stimulated increase in PDHa activity (mean ± SEM [% from the basal state to the HEC]: control, 47 ± 19; GH, -15 ± 21; GH+acipimox, 3 ± 21; acipimox, 57 ± 22; main effect: p = 0.02). CONCLUSIONS/INTERPRETATION: GH-induced insulin resistance in skeletal muscle is: (1) causally linked to lipolysis; (2) not associated with either accumulation of DAGs and ceramides or impaired insulin signalling; (3) likely to involve substrate competition between glucose and lipid intermediates. TRIAL REGISTRATION: ClinicalTrials.gov NCT02782208 FUNDING: The work was supported by the Grant for Growth Innovation (GGI), which was funded by Merck KGaA, Darmstadt, Germany. Graphical abstract.


Subject(s)
Insulin Resistance/physiology , Lipolysis/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Calorimetry, Indirect , Ceramides/metabolism , Diglycerides/metabolism , Electrophoresis, Capillary , Growth Hormone/pharmacology , Humans , Lipid Metabolism/drug effects , Lipolysis/drug effects , Male , Polymerase Chain Reaction , Pyrazines/pharmacology
8.
FASEB J ; 34(6): 8653-8670, 2020 06.
Article in English | MEDLINE | ID: mdl-32372536

ABSTRACT

The aim of the study was to investigate the impact of autophagy inhibition on skeletal muscle mitochondrial function and glucose homeostasis in young and aged mice. The transcriptional co-activator PGC-1α regulates muscle oxidative phenotype which has been shown to be linked with basal autophagic capacity. Therefore, young and aged inducible muscle-specific PGC-1α knockout (iMKO) mice and littermate lox/lox controls were used in three separate experiments performed after either saline or colchicine injections on two consecutive days: (1) Euthanization in the basal state obtaining skeletal muscle for mitochondrial respirometry, (2) whole body glucose tolerance test, and (3) in vivo insulin-stimulated 2-deoxyglucose (2-DG) uptake into skeletal muscle. Muscle PGC-1α was not required for maintaining basal autophagy flux, regardless of age. Colchicine-induced inhibition of autophagy was associated with impairments of skeletal muscle mitochondrial function, including reduced ADP sensitivity and altered mitochondrial redox balance in both young and aged mice. Colchicine treatment reduced the glucose tolerance in aged, but not young mice, and similarly in iMKO and lox/lox mice. Colchicine reduced insulin-stimulated 2-DG uptake in soleus muscle in aged mice, independently of PGC-1α, and without affecting insulin-regulated phosphorylation of proximal or distal mediators of insulin signaling. In conclusion, the results indicate that autophagy regulates the mitochondrial ADP sensitivity and redox balance as well as whole body glucose tolerance and skeletal muscle insulin sensitivity in aged mice, with no additional effects of inducible PGC-1α deletion.


Subject(s)
Colchicine/pharmacology , Insulin Resistance/physiology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Age Factors , Animals , Autophagy/drug effects , Deoxyglucose/metabolism , Energy Metabolism/drug effects , Female , Glucose Tolerance Test/methods , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/drug effects
9.
Pflugers Arch ; 472(2): 217-233, 2020 02.
Article in English | MEDLINE | ID: mdl-31781893

ABSTRACT

White adipose tissue is a major energy reserve for the body and is essential for providing fatty acids for other tissues when needed. Skeletal muscle interleukin-6 (IL-6) has been shown to be secreted from the working muscle and has been suggested to signal to adipose tissue and enhance lipolysis. The aim of the present study was to investigate the role of skeletal muscle IL-6 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) lipolysis and glyceroneogenesis with prolonged moderate-intensity exercise and high-intensity exercise in mice. Female inducible muscle-specific IL-6 knockout (IL-6 iMKO) mice and littermate control (Floxed) mice performed a single exercise bout for either 120 min at 16 m/min and 10° slope (moderate intensity) or 30 min at 20 m/min and 10° slope (high intensity), or they remained rested (rest). Visceral and subcutaneous adipose tissues, quadriceps muscles, and blood were quickly obtained. Plasma IL-6 increased in Floxed mice but not in IL-6 iMKO mice with high-intensity exercise. VAT signal transducer and activator of transcription (STAT)3Tyr705 phosphorylation was lower, and VAT hormone-sensitive lipase (HSL)Ser563 phosphorylation was higher in IL-6 iMKO mice than in Floxed mice at rest. Furthermore, HSLSer563 and HSLSer660 phosphorylation increased in VAT and phosphoenolpyruvate carboxykinase protein decreased in SAT with moderate-intensity exercise in both genotypes. On the other hand, both exercise protocols increased pyruvate dehydrogenaseSer232 phosphorylation in VAT only in IL-6 iMKO mice and decreased tumor necrosis factor-α messenger RNA in SAT and VAT only in Floxed mice. In conclusion, the present findings suggest that skeletal muscle IL-6 regulates markers of lipolysis in VAT in the basal state and pyruvate availability for glyceroneogenesis in VAT with exercise. Moreover, skeletal muscle IL-6 may contribute to exercise-induced anti-inflammatory effects in SAT and VAT.


Subject(s)
Interleukin-6/metabolism , Intra-Abdominal Fat/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/methods , Subcutaneous Fat/metabolism , Animals , Female , Interleukin-6/blood , Interleukin-6/genetics , Intra-Abdominal Fat/physiology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Pyruvate Dehydrogenase Complex/metabolism , STAT3 Transcription Factor/metabolism , Sterol Esterase/metabolism , Subcutaneous Fat/physiology
10.
Physiol Rep ; 7(21): e14285, 2019 11.
Article in English | MEDLINE | ID: mdl-31724339

ABSTRACT

Fasting in human subjects shifts skeletal muscle metabolism toward lipid utilization and accumulation, including intramyocellular lipid (IMCL) deposition. Growth hormone (GH) secretion amplifies during fasting and promotes lipolysis and lipid oxidation, but it is unknown to which degree lipid deposition and metabolism in skeletal muscle during fasting depends on GH action. To test this, we studied nine obese but otherwise healthy men thrice: (a) in the postabsorptive state ("CTRL"), (b) during 72-hr fasting ("FAST"), and (c) during 72-hr fasting and treatment with a GH antagonist (GHA) ("FAST + GHA"). IMCL was assessed by magnetic resonance spectroscopy (MRS) and blood samples were drawn for plasma metabolomics assessment while muscle biopsies were obtained for measurements of regulators of substrate metabolism. Prolonged fasting was associated with elevated GH levels and a pronounced GHA-independent increase in circulating medium- and long-chain fatty acids, glycerol, and ketone bodies indicating increased supply of lipid intermediates to skeletal muscle. Additionally, fasting was associated with a release of short-, medium-, and long-chain acylcarnitines to the circulation from an increased ß-oxidation. This was consistent with a ≈55%-60% decrease in pyruvate dehydrogenase (PDHa) activity. Opposite, IMCL content increased ≈75% with prolonged fasting without an effect of GHA. We suggest that prolonged fasting increases lipid uptake in skeletal muscle and saturates lipid oxidation, both favoring IMCL deposition. This occurs without a detectable effect of GHA on skeletal muscle lipid metabolism.


Subject(s)
Fasting/metabolism , Lipid Metabolism/physiology , Muscle, Skeletal/metabolism , Obesity/metabolism , Glucose/metabolism , Human Growth Hormone/metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Metabolome , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptors/metabolism
11.
Am J Physiol Endocrinol Metab ; 317(3): E513-E525, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31265325

ABSTRACT

Impaired mitochondrial function has been implicated in the pathogenesis of age-associated metabolic diseases through regulation of cellular redox balance. Exercise training is known to promote mitochondrial biogenesis in part through induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Recently, mitochondrial ADP sensitivity has been linked to reactive oxygen species (ROS) emission with potential impact on age-associated physiological outcomes, but the underlying molecular mechanisms remain unclear. Therefore, the present study investigated the effects of aging and exercise training on mitochondrial properties beyond biogenesis, including respiratory capacity, ADP sensitivity, ROS emission, and mitochondrial network structure, in myofibers from inducible muscle-specific PGC-1α-knockout mice and control mice. Aged mice displayed lower running endurance and mitochondrial respiratory capacity than young mice. This was associated with intermyofibrillar mitochondrial network fragmentation, diminished submaximal ADP-stimulated respiration, increased mitochondrial ROS emission, and oxidative stress. Exercise training reversed the decline in maximal respiratory capacity independent of PGC-1α, whereas exercise training rescued the age-related mitochondrial network fragmentation and the impaired submaximal ADP-stimulated respiration in a PGC-1α-dependent manner. Furthermore, lack of PGC-1α was associated with altered phosphorylation and carbonylation of the inner mitochondrial membrane ADP/ATP exchanger adenine nucleotide translocase 1. In conclusion, the present study provides evidence that PGC-1α regulates submaximal ADP-stimulated respiration, ROS emission, and mitochondrial network structure in mouse skeletal muscle during aging and exercise training.


Subject(s)
Aging/physiology , Mitochondria, Muscle/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology , Physical Conditioning, Animal/physiology , Adenosine Diphosphate/metabolism , Animals , Glutathione/metabolism , Humans , Male , Mice , Mice, Knockout , Oxidation-Reduction , Oxygen Consumption , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Physical Endurance/physiology , Reactive Oxygen Species/metabolism , Running/physiology
12.
PLoS One ; 13(9): e0201401, 2018.
Article in English | MEDLINE | ID: mdl-30231055

ABSTRACT

BACKGROUND: The performance of elite breath hold divers (BHD) includes static breath hold for more than 11 minutes, swimming as far as 300 m, or going below 250 m in depth, all on a single breath of air. Diving mammals are adapted to sustain oxidative metabolism in hypoxic conditions through several metabolic adaptations, including improved capacity for oxygen transport and mitochondrial oxidative phosphorylation in skeletal muscle. It was hypothesized that similar adaptations characterized human BHD. Hence, the purpose of this study was to examine the capacity for oxidative metabolism in skeletal muscle of BHD compared to matched controls. METHODS: Biopsies were obtained from the lateral vastus of the femoral muscle from 8 Danish BHD and 8 non-diving controls (Judo athletes) matched for morphometry and whole body VO2max. High resolution respirometry was used to determine mitochondrial respiratory capacity and leak respiration with simultaneous measurement of mitochondrial H2O2 emission. Maximal citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (HAD) activity were measured in muscle tissue homogenates. Western Blotting was used to determine protein contents of respiratory complex I-V subunits and myoglobin in muscle tissue lysates. RESULTS: Muscle biopsies of BHD revealed lower mitochondrial leak respiration and electron transfer system (ETS) capacity and higher H2O2 emission during leak respiration than controls, with no differences in enzyme activities (CS and HAD) or protein content of mitochondrial complex subunits myoglobin, myosin heavy chain isoforms, markers of glucose metabolism and antioxidant enzymes. CONCLUSION: We demonstrated for the first time in humans, that the skeletal muscles of BHD are characterized by lower mitochondrial oxygen consumption both during low leak and high (ETS) respiration than matched controls. This supports previous observations of diving mammals demonstrating a lower aerobic mitochondrial capacity of the skeletal muscles as an oxygen conserving adaptation during prolonged dives.


Subject(s)
Breath Holding , Diving/physiology , Mitochondria, Muscle/metabolism , Oxygen/metabolism , Adaptation, Physiological/physiology , Adult , Electron Transport , Humans , Hydrogen Peroxide/metabolism , Male , Middle Aged , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Oxygen Consumption/physiology , Swimming/physiology
13.
Pflugers Arch ; 470(11): 1597-1613, 2018 11.
Article in English | MEDLINE | ID: mdl-30069669

ABSTRACT

The liver and adipose tissue are important tissues in whole-body metabolic regulation during fasting. Interleukin 6 (IL-6) is a cytokine shown to be secreted from contracting muscle in humans and suggested to signal to the liver and adipose tissue. Furthermore, skeletal muscle IL-6 has been proposed to play a role during fasting. Therefore the aim of the present study was to investigate the role of skeletal muscle IL-6 in the regulation of substrate production in the liver and adipose tissue during fasting. Male skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and littermate floxed (control) mice fasted for 6 or 18 h (6 h fasting or 18 h fasting) with corresponding fed control groups (6 h fed or 18 h fed) and liver and adipose tissue were quickly obtained. Plasma ß-hydroxybutyrate increased and hepatic glucose, lactate and glycogen decreased with fasting. In addition, fasting increased phosphoenolpyruvate carboxykinase protein and phosphorylation of pyruvate dehydrogenase (PDH) in the liver as well as hormone-sensitive lipase (HSL)Ser660 and HSLSer563 phosphorylation, PDH phosphorylation, adipose triglyceride lipase phosphorylation and perilipin phosphorylation and protein content in adipose tissue without any effect of lack of skeletal muscle IL-6. In conclusion, fasting induced regulation of enzymes in adipose tissue lipolysis and glyceroneogenesis as well as regulation of hepatic gluconeogenic capacity and hepatic substrate utilization in mice. However, skeletal muscle IL-6 was not required for these fasting-induced effects, but had minor effects on markers of lipolysis and glyceroneogenesis in adipose tissue as well as markers of hepatic gluconeogenesis in the fed state.


Subject(s)
Adipose Tissue/metabolism , Fasting/metabolism , Interleukin-6/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Animals , Gluconeogenesis , Interleukin-6/genetics , Lipolysis , Male , Mice
14.
J Physiol ; 596(18): 4375-4391, 2018 09.
Article in English | MEDLINE | ID: mdl-30109697

ABSTRACT

KEY POINTS: Mammals defend against cold-induced reductions in body temperature through both shivering and non-shivering thermogenesis. The activation of non-shivering thermogenesis is primarily driven by uncoupling protein-1 in brown adipose tissue and to a lesser degree by the browning of white adipose tissue. Endurance exercise has also been shown to increase markers of white adipose tissue browning. This study aimed to determine whether prior exercise training would alter the response to a cold challenge and if this would be associated with differences in indices of non-shivering thermogenesis. It is shown that exercise training protects against cold-induced weight loss by increasing food intake. Exercise-trained mice were better able to maintain their core temperature, independent of differences in markers of non-shivering thermogenesis. ABSTRACT: Shivering is one of the first defences against cold, and as skeletal muscle fatigues there is an increased reliance on non-shivering thermogenesis. Brown and beige adipose tissues are the primary thermogenic tissues regulating this process. Exercise has also been shown to increase the thermogenic capacity of subcutaneous white adipose tissue. Whether exercise has an effect on the adaptations to cold stress within adipose tissue and skeletal muscle remains to be shown. Male C57BL/6 mice were either subjected to voluntary wheel running or remained sedentary for 12 days. Exercise led to decreased body weight and increased glucose tolerance. Mice were then divided into groups kept at 25°C room temperature or a cold challenge of 4°C for 48 h. Exercised mice were protected against cold-induced reductions in weight and in parallel with increased food intake. Providing exercised mice with the same amount of food as sedentary mice eliminated the protection against cold-induced weight loss. Cold exposure led to greater reductions in rectal temperature in sedentary compared to exercised mice. This protective effect was not explained by differences in the browning of white adipose tissue or brown adipose tissue mass. Similarly, the ability of the ß3 -adrenergic agonist CL 316,243 to increase energy expenditure was attenuated in previously exercised mice, suggesting that the activation of uncoupling protein-1 in brown and/or beige adipocytes is not the source of protective effects. We speculate that the protection against cold-induced reductions in rectal temperature could potentially be linked to exercise-induced alterations in skeletal muscle.


Subject(s)
Adipose Tissue/physiology , Cold Temperature , Physical Exertion , Thermogenesis , Adipose Tissue/metabolism , Animals , Eating , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , Weight Loss
15.
J Appl Physiol (1985) ; 125(5): 1609-1619, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30161009

ABSTRACT

The present study aimed at investigating fasting-induced responses in regulators and markers of autophagy in vastus lateralis muscle from untrained and trained human subjects. Untrained and trained subjects (based on maximum oxygen uptake, muscle citrate synthase activity, and oxidative phosphorylation protein level) fasted for 36 h with vastus lateralis muscle biopsies obtained at 2, 12, 24, and 36 h after a standardized meal. Fasting reduced ( P < 0.05) skeletal muscle microtubule-associated protein-1A/1B light chain 3 (LC3)I, LC3II, and adaptor protein sequestosome 1/p62 protein content in untrained subjects only. Moreover, skeletal muscle RAC-alpha serine/threonine-protein kinase (AKT)Thr308, AMP-activated protein kinase (AMPK)Thr172, and Unc-51-like autophagy-activating kinase-1 (ULK1)Ser555 phosphorylation state, as well as Bcl-2-interacting coiled-coil protein-1 (Beclin1) and ULK1Ser757 phosphorylation, was lower ( P < 0.05) in trained than untrained subjects during fasting. In addition, the plasma concentrations of several amino acids were higher ( P < 0.05) in trained than untrained subjects, and the plasma concentration profile of several amino acids was different in untrained and trained subjects during fasting. Taken together, these findings suggest that 36-h fasting has effects on some mediators of autophagy in untrained human skeletal muscle and that training state influences the effect of fasting on autophagy signaling and on mediators of autophagy in skeletal muscle. NEW & NOTEWORTHY This study showed that skeletal muscle autophagy was only modestly affected in humans by 36 h of fasting. Hence, 36-h fasting has effects on some mediators of autophagy in untrained human skeletal muscle, and training state influences the effect of fasting on autophagy signaling and on mediators of autophagy in skeletal muscle.


Subject(s)
Amino Acids/blood , Autophagy , Fasting/physiology , Muscle, Skeletal/metabolism , Physical Fitness/physiology , AMP-Activated Protein Kinases/metabolism , Adult , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Healthy Volunteers , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Pflugers Arch ; 470(11): 1633-1645, 2018 11.
Article in English | MEDLINE | ID: mdl-29946822

ABSTRACT

The aim of the present study was to examine the influence of training state on fasting-induced skeletal muscle pyruvate dehydrogenase (PDH) regulation, including PDH phosphorylation. Trained and untrained subjects, matched for skeletal muscle CS activity and OXPHOS protein, fasted for 36 h after receiving a standardized meal. Respiratory exchange ratio (RER) was measured and blood as well as vastus lateralis muscle biopsies were obtained 2, 12, 24, and 36 h after the meal. RER decreased with fasting only in untrained individuals, while PDHa activity decreased from 12 h after the meal in untrained, but only tended to decrease at 36 h in trained. PDH-E1α, PDP1 protein, PDH phosphorylation, and PDH acetylation in skeletal muscle was higher in trained than untrained subjects, but did not change with fasting, while PDK4 protein was higher at 36 h than at 2 h after the meal in both groups. In conclusion, the present results suggest that endurance exercise training modifies the fasting-induced regulation of PDHa activity in skeletal muscle and the substrate switch towards fat oxidation. PDH phosphorylation could not explain the fasting-induced regulation of PDHa activity suggesting other post translational modifications.


Subject(s)
Exercise , Fasting/metabolism , Muscle, Skeletal/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Acetylation , Adult , Humans , Muscle, Skeletal/physiology , Oxygen Consumption , Phosphorylation
17.
Am J Physiol Endocrinol Metab ; 314(1): E1-E20, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28874356

ABSTRACT

PGC-1α has been suggested to regulate exercise training-induced metabolic adaptations and autophagy in skeletal muscle. The factors regulating PGC-1α, however, have not been fully resolved. The aim was to investigate the impact of ß-adrenergic signaling in PGC-1α-mediated metabolic adaptations in skeletal muscle with exercise training. Muscle was obtained from muscle-specific PGC-1α knockout (MKO) and lox/lox mice 1) 3 h after a single exercise bout with or without prior injection of propranolol or 3 h after a single injection of clenbuterol and 2) after 5 wk of wheel running exercise training with or without propranolol treatment or after 5 wk of clenbuterol treatment. A single clenbuterol injection and an acute exercise bout similarly increased the mRNA content of both N-terminal and full-length PGC-1α isoforms, and prior propranolol treatment reduced the exercise-induced increase in mRNA of all isoforms. Furthermore, a single clenbuterol injection elicited a PGC-1α-dependent increase in cytochrome c and vascular endothelial growth factor mRNA, whereas prolonged clenbuterol treatment increased fiber size but reduced capillary density. Exercise training increased the protein content of OXPHOS, LC3I, and Parkin in a PGC-1α-dependent manner without effect of propranolol, while an exercise training-induced increase in Akt2 and p62 protein required PGC-1α and was blunted by prolonged propranolol treatment. This suggests that ß-adrenergic signaling is not required for PGC-1α-mediated exercise training-induced adaptations in mitochondrial proteins, but contributes to exercise training-mediated adaptations in insulin signaling and autophagy regulation through PGC-1α. Furthermore, changes observed with acute stimulation of compounds like clenbuterol and propranolol may not lead to corresponding adaptations with prolonged treatment.


Subject(s)
Adaptation, Physiological , Adrenergic beta-Agonists/pharmacology , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Animals , Autophagy/drug effects , Autophagy/physiology , Clenbuterol/pharmacology , Insulin/metabolism , Male , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Motor Activity/drug effects , Motor Activity/genetics , Muscle, Skeletal/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Physical Conditioning, Animal/physiology , Signal Transduction/drug effects , Signal Transduction/genetics
18.
J Appl Physiol (1985) ; 124(3): 729-740, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29191981

ABSTRACT

Recruitment of fatty acids from adipose tissue is increased during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore the aim of the present study was to investigate 1) fasting-induced regulation of lipolysis and glyceroneogenesis in human adipose tissue as well as 2) the impact of training state on basal oxidative capacity and fasting-induced metabolic regulation in human adipose tissue. Untrained [maximal oxygen uptake (V̇o2max) < 45 ml·min-1·kg-1] and trained subjects (V̇o2max > 55 ml·min-1·kg-1) fasted for 36 h, and abdominal subcutaneous adipose tissue biopsies were obtained 2, 12, 24, and 36 h after a standardized meal. Adipose tissue oxidative phosphorylation complexes, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase (PDH)-E1α protein as well as PDH kinase (PDK) 2, PDK4, and PDH phosphatase 2 mRNA content were higher in trained subjects than in untrained subjects. In addition, trained subjects had higher adipose tissue hormone-sensitive lipase Ser660 phosphorylation and adipose triglyceride lipase protein content as well as higher plasma free fatty acid concentration than untrained subjects during fasting. Moreover, adipose tissue PDH phosphorylation increased with fasting only in trained subjects. Taken together, trained subjects seem to possess higher basal adipose tissue oxidative capacity as well as higher capacity for regulation of lipolysis and for providing substrate for glyceroneogenesis in adipose tissue during fasting than untrained subjects. NEW & NOTEWORTHY This study shows for the first time higher protein content of lipolytic enzymes and higher oxidative phosphorylation protein in adipose tissue from trained subjects than from untrained subjects during fasting. Furthermore, trained subjects had higher capacity for adipose tissue glyceroneogenesis than untrained subjects.


Subject(s)
Adipose Tissue/metabolism , Endurance Training , Fasting/metabolism , Lipolysis , Adult , Glucose Transporter Type 4/metabolism , Glycerol/blood , Hormones/blood , Humans , Lipoprotein Lipase/metabolism , Oxidative Phosphorylation , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Young Adult
19.
Toxicol Sci ; 162(1): 309-317, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29177473

ABSTRACT

High-fat diet (HFD) induces several changes to the pathways regulating energy homeostasis and changes the expression of the hepatic cytochrome p450 (Cyp) enzyme-system. Despite these pervious findings, it is still unclear how the effects of HFD and especially HFD in combination with treadmill running affect hepatic Cyp expression. In this study, we investigated the mRNA and protein expression of selected Cyp's in mice subjected to 16 weeks of HFD and treadmill running. To understand the regulatory mechanisms behind the exercise-induced reversion of the HFD-induced changes in Cyp expression, we used a model in which the exercise-induced myokine and known regulator of hepatic Cyp's, interleukin-6 (IL-6), were knocked out specifically in skeletal muscle. We found that HFD increased the mRNA expression of Cyp1a1 and Cyp4a10, and decreased the expression of Cyp2a4, Cyp2b10, Cyp2e1, and Cyp3a11. HFD in combination with treadmill running reversed the HFD increase in Cyp4a10 mRNA expression. In addition, we observed increased Cyp1a and Cyp3a protein expression as an effect of exercise, whereas Cyp2b expression was lowered as an effect of HFD. IL-6 effected the response in Cyp3a11 and Cyp1a expression. We observed no changes in the content of the aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, or peroxisome proliferation activator receptor alpha. In conclusion, we show that both HFD and exercise in HFD-fed animals can regulate hepatic Cyp expression and that changes in Cyp3a in response to HFD and exercise are dependent on skeletal muscular IL-6.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Diet, High-Fat/adverse effects , Gene Expression Regulation , Interleukin-6/metabolism , Liver/drug effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Animals , Exercise Test , Interleukin-6/genetics , Liver/enzymology , Mice, Inbred C57BL , Mice, Knockout
20.
Toxicol Lett ; 282: 93-99, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29030272

ABSTRACT

The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Energy Metabolism , Fasting/metabolism , Interleukin-6/pharmacology , Liver/metabolism , RNA, Messenger/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Energy Metabolism/drug effects , Inactivation, Metabolic , Interleukin-6/blood , Liver/drug effects , Male , Mice, Inbred C57BL , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...