Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 4(3): 300-307, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38737121

ABSTRACT

Functional polymers can be used as electrolyte and binder materials in solid-state batteries. This often requires performance targets in terms of both the transport and mechanical properties. In this work, a model ionic conductive polymer system, i.e., poly(ethylene oxide)-LiTFSI, was used to study the impact of salt concentrations on mechanical properties, including different types of elastic moduli and the viscoelasticity with both nonequilibrium and equilibrium molecular dynamics simulations. We found an encouragingly good agreement between experiments and simulations regarding Young's modulus, bulk modulus, and viscosity. In addition, we identified an intermediate salt concentration at which the system shows high ionic conductivity, high Young's modulus, and short elastic restoration time. Therefore, this study laid the groundwork for investigating ionic conductive polymer binders with self-healing functionality from molecular dynamics simulations.

2.
Acc Chem Res ; 57(8): 1123-1134, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569004

ABSTRACT

ConspectusPolymer electrolytes constitute a promising type of material for solid-state batteries. However, one of the bottlenecks for their practical implementation lies in the transport properties, often including restricted Li+ self-diffusion and conductivity and low cationic transference numbers. This calls for a molecular understanding of ion transport in polymer electrolytes in which molecular dynamics (MD) simulation can provide both new physical insights and quantitative predictions. Although efforts have been made in this area and qualitative pictures have emerged, direct and quantitative comparisons between experiment and simulation remain challenging because of the lack of a unified theoretical framework to connect them.In our work, we show that by computing the glass transition temperature (Tg) of the model system and using the normalized inverse temperature 1000/(T - Tg + 50), the Li+ self-diffusion coefficient can be compared quantitatively between MD simulations and experiments. This allows us to disentangle the effects of Tg and the polymer dielectric environment on ion conduction in polymer electrolytes, giving rise to the identification of an optimal solvating environment for fast ion conduction.Unlike Li+ self-diffusion coefficients and ionic conductivity, the transference number, which describes the fraction of current carried by Li+ ions, depends on the boundary conditions or the reference frame (RF). This creates a non-negligible gap when comparing experiment and simulation because the fluxes in the experimental measurements and in the linear response theory used in MD simulation are defined in different RFs. We show that by employing the Onsager theory of ion transport and applying a proper RF transformation, a much better agreement between experiment and simulation can be achieved for the PEO-LiTFSI system. This further allows us to derive the theoretical expression for the Bruce-Vincent transference number in terms of the Onsager coefficients and make a direct comparison to experiments. Since the Bruce-Vincent method is widely used to extract transference numbers from experimental data, this opens the door to calibrating MD simulations via reproducing the Bruce-Vincent transference number and using MD simulations to predict the true transference number.In addition, we also address several open questions here such as the time-scale effects on the ion-pairing phenomenon, the consistency check between different types of experiments, the need for more accurate force fields used in MD simulations, and the extension to multicomponent systems. Overall, this Account focuses on building new bridges between experiment and simulation for quantitative comparison, warnings of pitfalls when comparing apples and oranges, and clarifying misconceptions. From a physical chemistry point of view, it connects to concentrated solution theory and provides a unified theoretical framework that can maximize the power of MD simulations. Therefore, this Account will be useful for the electrochemical energy storage community at large and set examples of how to approach experiments from theory and simulation (and vice versa).

3.
J Am Chem Soc ; 144(17): 7583-7587, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35446043

ABSTRACT

The transport coefficients, in particular the transference number, of electrolyte solutions are important design parameters for electrochemical energy storage devices. The recent observation of negative transference numbers in PEO-LiTFSI under certain conditions has generated much discussion about its molecular origins, by both experimental and theoretical means. However, one overlooked factor in these efforts is the importance of the reference frame (RF). This creates a non-negligible gap when comparing experiment and simulation because the fluxes in the experimental measurements of transport coefficients and in the linear response theory used in the molecular dynamics simulation are defined in different RFs. In this work, we show that, by applying a proper RF transformation, a much improved agreement between experimental and simulation results can be achieved. Moreover, it is revealed that the anion mass and the anion-anion correlation, rather than ion aggregates, play a crucial role for the reported negative transference numbers.

4.
Macromolecules ; 55(24): 10940-10949, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36590372

ABSTRACT

Research on solid polymer electrolytes (SPEs) is now moving beyond the realm of polyethers that have dominated the field for several decades. A promising alternative group of candidates for SPE host materials is carbonyl-containing polymers. In this work, SPE properties of three different types of carbonyl-coordinating polymers are compared: polycarbonates, polyesters, and polyketones. The investigated polymers were chosen to be as structurally similar as possible, with only the functional group being different, thereby giving direct insights into the role of the noncoordinating main-chain oxygens. As revealed by experimental measurements as well as molecular dynamics simulations, the polyketone possesses the lowest glass transition temperature, but the ion transport is limited by a high degree of crystallinity. The polycarbonate, on the other hand, displays a relatively low coordination strength but is instead limited by its low molecular flexibility. The polyester performs generally as an intermediate between the other two, which is reasonable when considering its structural relation to the alternatives. This work demonstrates that local changes in the coordinating environment of carbonyl-containing polymers can have a large effect on the overall ion conduction, thereby also showing that desired transport properties can be achieved by fine-tuning the polymer chemistry of carbonyl-containing systems.

5.
J Phys Chem Lett ; 12(35): 8460-8464, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34449227

ABSTRACT

Ion pairing is commonly considered as a culprit for the reduced ionic conductivity in polymer electrolyte systems. However, this simple thermodynamic picture should not be taken literally, as ion pairing is a dynamical phenomenon. Here we construct model poly(ethylene oxide)-bis(trifluoromethane)sulfonimide lithium salt systems with different degrees of ion pairing by tuning the solvent polarity and examine the relation between the cation-anion distinct conductivity σ+-d and the lifetime of ion pairs τ+- using molecular dynamics simulations. It is found that there exist two distinct regimes where σ+-d scales with 1/τ+- and τ+-, respectively, and the latter is a signature of longer-lived ion pairs that contribute negatively to the total ionic conductivity. This suggests that ion pairs are kinetically different depending on the solvent polarity, which renders the ion-pair lifetime highly important when discussing its effect on ion transport in polymer electrolyte systems.

6.
J Phys Chem B ; 124(37): 8124-8131, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32840375

ABSTRACT

We herein report an all-atom molecular dynamics study on the role of solvent polarity for Li+ diffusion in polymer electrolytes using PEO-LiTFSI (poly(ethylene oxide)-lithium bis(trifluoromethane)sulfonimide) as a model system. By separating the effect of Tg and the effect of solvent polarity in our simulations, we show that the maximum in the diffusion coefficient of Li+ with respect to the dielectric constant of polymer solvent εp is due to transitions in the transport mechanism. In particular, it is found that the frequent interchain hopping involves the coordination of both PEO and TFSI. This optimal solvating ability of PEO at an intermediate value of εp leads to the fast ion conduction. These findings highlight the synergetic effect of solvent polarity and bond polarity on Li-ion diffusion in solid polymer electrolytes.

7.
Phys Chem Chem Phys ; 22(15): 7680-7684, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32242576

ABSTRACT

The electronic structure of poly(ethyleneoxide) with and without a common electrolyte lithium bis(trifluoromethane)sulfonimide salt is calculated from first principles. Introducing the salt into the polymer electrolyte significantly reduces the band gap, down to 0.6 eV. Thus, this will have a significant impact on the leakage currents in polymer electrolytes used in all-solid-state batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...