Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6804, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815394

ABSTRACT

Intratumour heterogeneity is a major cause of treatment failure in cancer. We present in-depth analyses combining transcriptomic and genomic profiling with ultra-deep targeted sequencing of multiregional biopsies in 10 patients with neuroblastoma, a devastating childhood tumour. We observe high spatial and temporal heterogeneity in somatic mutations and somatic copy-number alterations which are reflected on the transcriptomic level. Mutations in some druggable target genes including ALK and FGFR1 are heterogeneous at diagnosis and/or relapse, raising the issue whether current target prioritization and molecular risk stratification procedures in single biopsies are sufficiently reliable for therapy decisions. The genetic heterogeneity in gene mutations and chromosome aberrations observed in deep analyses from patient courses suggest clonal evolution before treatment and under treatment pressure, and support early emergence of metastatic clones and ongoing chromosomal instability during disease evolution. We report continuous clonal evolution on mutational and copy number levels in neuroblastoma, and detail its implications for therapy selection, risk stratification and therapy resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Clinical Decision-Making/methods , Genetic Heterogeneity , Neoadjuvant Therapy/methods , Neuroblastoma/therapy , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Child , Child, Preschool , Clinical Trials, Phase III as Topic , Clonal Evolution , DNA Copy Number Variations , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Profiling , Genomics , Humans , Infant , Male , Mutation , Neoadjuvant Therapy/statistics & numerical data , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Neuroblastoma/pathology , Randomized Controlled Trials as Topic , Risk Assessment/methods , Spatio-Temporal Analysis
2.
Int J Cancer ; 148(5): 1219-1232, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33284994

ABSTRACT

Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.


Subject(s)
Gene Amplification , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Glycine/metabolism , Humans , Mice , Neuroblastoma/genetics , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...