Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
iScience ; 26(12): 108426, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38058306

ABSTRACT

Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics. Sixty-one young healthy adults underwent four DWI sessions, two sequential motor trainings, and a night of total sleep deprivation or regular sleep distributed over five days. We observed rapid-motor-learning-related remodeling in occipitoparietal, temporal, and motor-related subcortical regions, reflecting temporary dynamics in learning-related neuronal brain plasticity processes. Sleep-related consolidation seems not to exert a detectable impact on diffusion parameters, at least on the timescale of a few days.

2.
J Neurosci Res ; 101(7): 1031-1043, 2023 07.
Article in English | MEDLINE | ID: mdl-36787426

ABSTRACT

Evidence for sleep-dependent changes in microstructural neuroplasticity remains scarce, despite the fact that it is a mandatory correlate of the reorganization of learning-related functional networks. We investigated the effects of post-training sleep on structural neuroplasticity markers measuring standard diffusion tensor imaging (DTI), mean diffusivity (MD), and the revised biophysical neurite orientation dispersion and density imaging (NODDI), free water fraction (FWF), and neurite density (NDI) parameters that enable disentangling whether MD changes result from modifications in neurites or in other cellular components (e.g., glial cells). Thirty-four healthy young adults were scanned using diffusion-weighted imaging (DWI) on Day1 before and after 40-min route learning (navigation) in a virtual environment, then were sleep deprived (SD) or slept normally (RS) for the night. After recovery sleep for 2 nights, they were scanned again (Day4) before and after 40-min route learning (navigation) in an extended environment. Sleep-related microstructural changes were computed on DTI (MD) and NODDI (NDI and FWF) parameters in the cortical ribbon and subcortical hippocampal and striatal regions of interest (ROIs). Results disclosed navigation learning-related decreased DWI parameters in the cortical ribbon (MD, FWF) and subcortical (MD, FWF, NDI) areas. Post-learning sleep-related changes were found at Day4 in the extended learning session (pre- to post-relearning percentage changes), suggesting a rapid sleep-related remodeling of neurites and glial cells subtending learning and memory processes in basal ganglia and hippocampal structures.


Subject(s)
Spatial Navigation , White Matter , Young Adult , Humans , Diffusion Tensor Imaging/methods , Neurites , Diffusion Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Brain
3.
Biol Psychiatry Glob Open Sci ; 3(1): 10-21, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36712566

ABSTRACT

While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.

4.
Cancers (Basel) ; 14(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36497362

ABSTRACT

High- and low-risk endometrial carcinoma (EC) differ in whether or not a lymphadenectomy is performed. We aimed to develop MRI-based radio-genomic models able to preoperatively assess lymph-vascular space invasion (LVSI) and discriminate between low- and high-risk EC according to the ESMO-ESGO-ESTRO 2020 guidelines, which include molecular risk classification proposed by "ProMisE". This is a retrospective, multicentric study that included 64 women with EC who underwent 3T-MRI before a hysterectomy. Radiomics features were extracted from T2WI images and apparent diffusion coefficient maps (ADC) after manual segmentation of the gross tumor volume. We constructed a multiple logistic regression approach from the most relevant radiomic features to distinguish between low- and high-risk classes under the ESMO-ESGO-ESTRO 2020 guidelines. A similar approach was taken to assess LVSI. Model diagnostic performance was assessed via ROC curves, accuracy, sensitivity and specificity on training and test sets. The LVSI predictive model used a single feature from ADC as a predictor; the risk class model used two features as predictors from both ADC and T2WI. The low-risk predictive model showed an AUC of 0.74 with an accuracy, sensitivity, and specificity of 0.74, 0.76, 0.94; the LVSI model showed an AUC of 0.59 with an accuracy, sensitivity, and specificity of 0.60, 0.50, 0.61. MRI-based radio-genomic models are useful for preoperative EC risk stratification and may facilitate therapeutic management.

6.
Neuroimage ; 215: 116835, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32289460

ABSTRACT

This work introduces a compartment-based model for apparent cell body (namely soma) and neurite density imaging (SANDI) using non-invasive diffusion-weighted MRI (DW-MRI). The existing conjecture in brain microstructure imaging through DW-MRI presents water diffusion in white (WM) and gray (GM) matter as restricted diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model successfully describe DW-MRI data in WM and GM at b â€‹≤ â€‹3,000 â€‹s/mm2 (or 3 â€‹ms/µm2), it has been also shown to fail in GM at high b values (b≫3,000 â€‹s/mm2 or 3 â€‹ms/µm2). Here we hypothesise that the unmodelled soma compartment (i.e. cell body of any brain cell type: from neuroglia to neurons) may be responsible for this failure and propose SANDI as a new model of brain microstructure where soma of any brain cell type is explicitly included. We assess the effects of size and density of soma on the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data from mouse (bmax â€‹= â€‹40,000 â€‹s/mm2, or 40 â€‹ms/µm2) and human (bmax â€‹= â€‹10,000 â€‹s/mm2, or 10 â€‹ms/µm2) brain. We show that SANDI defines new contrasts representing complementary information on the brain cyto- and myelo-architecture. Indeed, we show maps from 25 healthy human subjects of MR soma and neurite signal fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Cell Body/physiology , Diffusion Magnetic Resonance Imaging/methods , Models, Neurological , Neurites/physiology , Adult , Animals , Brain/cytology , Female , Humans , Male , Mice , Mice, Inbred C57BL
7.
Neuroimage ; 188: 654-667, 2019 03.
Article in English | MEDLINE | ID: mdl-30583064

ABSTRACT

Nowadays, increasing longevity associated with declining cerebral nervous system functions, suggests the need for continued development of new imaging contrast mechanisms to support the differential diagnosis of age-related decline. In our previous papers, we developed a new imaging contrast metrics derived from anomalous diffusion signal representation and obtained from diffusion-weighted (DW) data collected by varying diffusion gradient strengths. Recently, we highlighted that the new metrics, named γ-metrics, depended on the local inhomogeneity due to differences in magnetic susceptibility between tissues and diffusion compartments in young healthy subjects, thus providing information about myelin orientation and iron content within cerebral regions. The major structural modifications occurring in brain aging are myelinated fibers damage in nerve fibers and iron accumulation in gray matter nuclei. Therefore, we investigated the potential of γ-metrics in relation to other conventional diffusion metrics such as DTI, DKI and NODDI in detecting age-related structural changes in white matter (WM) and subcortical gray matter (scGM). DW-images were acquired in 32 healthy subjects, adults and elderly (age range 20-77 years) using 3.0T and 12 b-values up to 5000 s/mm2. Association between diffusion metrics and subjects' age was assessed using linear regression. A decline in mean γ (Mγ) in the scGM and a complementary increase in radial γ (γ⊥) in frontal WM, genu of corpus callosum and anterior corona radiata with advancing age were found. We suggested that the increase in γ⊥ might reflect declined myelin density, and Mγ decrease might mirror iron accumulation. An increase in D// and a decrease in the orientation dispersion index (ODI) were associated with axonal loss in the pyramidal tracts, while their inverted trends within the thalamus were thought to be linked to reduced architectural complexity of nerve fibers. γ-metrics together with conventional diffusion-metrics can more comprehensively characterize the complex mechanisms underlining age-related changes than conventional diffusion techniques alone.


Subject(s)
Aging , Diffusion Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Young Adult
8.
Placenta ; 58: 33-39, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28962693

ABSTRACT

PURPOSE: To investigate the potential of bi-exponential model of diffusion-weighted (DW) signal decay to quantify diffusion and perfusion changes in human placenta of normal pregnancies due to its development. METHODS: 26 normal pregnancies at 19-37 weeks of gestation underwent Magnetic Resonance Imaging (MRI) examination at 1.5 T. DW Spin-Echo Echo Planar Imaging with diffusion gradients applied along 3 no-coplanar directions at seven different b-values (0,50,100,150,400,700,1000 s/mm2) was used. Apparent diffusion coefficient (ADC), pseudodiffusion (D*) and perfusion fraction (f) were extracted in selected placenta regions: umbilical (U-ROI), central (C-ROI) and peripheral (P-ROI). The relation between ADC, D*, f and mother age, gestational age (GA), Body-Mass Index (BMI), basal Glycaemia (bG), were evaluated. Pearson correlation with Bonferroni correction was used. RESULTS: A significant negative correlation was found between ADC and GA, for GA≥30w in P-ROI, while no-dependence of ADC on GA was observed in GA range 19-29 weeks. A positive linear correlation was found between f and GA in the C-ROI and between f and GA in P-ROI for GA≥30 week. No significant correlations were found between ADC, D*, f and age, BMI, bG. CONCLUSION: ADC measurements in P-ROI of normal placenta reflects tissue changes occurring in the third trimester of gestation. Specifically, ADC decreases with GA increase. Besides, f increases with the GA increase in the C-ROI and during the third trimester of pregnancy in the P-ROI. These results suggest the potential of diffusion and perfusion parameters extracted by using a biexponential model to provide information about placenta changes during its development.


Subject(s)
Magnetic Resonance Imaging , Placenta/diagnostic imaging , Placentation/physiology , Pregnancy Trimester, Second/physiology , Pregnancy Trimester, Third/physiology , Adult , Diffusion , Echo-Planar Imaging , Female , Humans , Middle Aged , Perfusion , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...