Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Vet Parasitol Reg Stud Reports ; 52: 101047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880566

ABSTRACT

The variability in the expression of different P-glycoprotein (P-gp) genes in parasitic nematodes of ruminants such as Haemonchus contortus (Hco-pgp) may be caused by different factors including nematode biology, geographical region and anthelmintic pressure. This study analysed the relative expression level of 10 P-gp genes in two H. contortus (Hco-pgp) field isolates from Yucatan, Mexico: 1) PARAISO (IVM-resistant) and 2) FMVZ-UADY (IVM-susceptible). These isolates were compared with a susceptible reference isolate from Puebla, Mexico, namely "CENID-SAI". In all cases H. contortus adult males were used. The Hco-pgp genes (1, 2, 3, 4, 9, 10, 11, 12, 14 and 16) were analysed for each isolate using the RT-qPCR technique. The Hco-pgp expressions were pairwise compared using the 2-ΔΔCt method and a t-test. The PARAISO isolate showed upregulation compared to the CENID-SAI isolate for Hco-pgp 1, 3, 9, 10 and 16 (P < 0.05), and the PARAISO isolate showed upregulation vs. FMVZ-UADY isolate for Hco-pgp 2 and 9 (P < 0.05), displaying 6.58- and 5.93-fold differences (P < 0.05), respectively. In contrast, similar Hco-pgp gene expression levels were recorded for FMVZ-UADY and CENID-SAI isolates except for Hco-pgp1 (P <0.1), which presented a significant upregulation (6.08-fold). The relative expression of Hco-pgp allowed confirming the IVM-resistant status of the PARAISO isolate and the IVM-susceptible status of the FMVZ-UADY isolate when compared to the CENID-SAI reference isolate. Therefore, understanding the association between the Hco-pgp genes expression of H. contortus and its IVM resistance status could help identifying the genes that could be used as molecular markers in the diagnosis of IVM resistance. However, it is important to consider the geographic origin of the nematode isolate and the deworming history at the farm of origin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Drug Resistance , Haemonchiasis , Haemonchus , Ivermectin , Animals , Haemonchus/drug effects , Haemonchus/genetics , Ivermectin/pharmacology , Mexico , Male , Drug Resistance/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Phenotype , Anthelmintics/pharmacology , Gene Expression , Sheep Diseases/parasitology , Sheep
2.
Front Nutr ; 11: 1425638, 2024.
Article in English | MEDLINE | ID: mdl-38903616

ABSTRACT

L-lysine functionalized gold nanoparticles (AuNPs-Lys) have been widely used for the detection of worldwide interest analytes. In this work, a colorimetric assay for the detection of the carcinogen aflatoxin B1 (AFB1) based on the aggregation of AuNPs-Lys in the presence of copper ions was developed. For this purpose, AuNPs were synthesized in citrate aqueous solution, functionalized, and further characterized by UV-Vis, fluorescence, Fourier transform infrared spectroscopy (FTIR), nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). In general, AuNPS-Lys (~2.73 × 1011 particles) offered a clear colorimetric response in the presence of AFB1 and Cu2+ ions showing linearity in the range of 6.25 to 200 ng AFB1/mL, with a detection limit of 4.18 ng AFB1/mL via photometric inspection. Moreover, the performance of the proposed methodology was tested using the 991.31 AOAC official procedure based on monoclonal antibodies in maize samples artificially contaminated with AFB1. There was a good agreement between the measured AFB1 concentrations in both assays, the average recoveries for the colorimetric and immunoaffinity assays were between 91.2-98.4% and 96.0-99.2%, respectively. These results indicated that the colorimetric assay could be used as a rapid, eco-friendly, and cost-effective platform for the quantification of AFB1 in maize-based products.

3.
Oxf Open Immunol ; 5(1): iqae003, 2024.
Article in English | MEDLINE | ID: mdl-38737941

ABSTRACT

Dengue virus (DENV) poses a global health threat, affecting millions individuals annually with no specific therapy and limited vaccines. Mosquitoes, mainly Aedes aegypti and Aedes albopictus worldwide, transmit DENV through their saliva during blood meals. In this study, we aimed to understand how Aedes mosquito saliva modulate skin immune responses during DENV infection in individuals living in mosquito-endemic regions. To accomplish this, we dissociated skin cells from Cambodian volunteers and incubated them with salivary gland extract (SGE) from three different mosquito strains: Ae. aegypti USDA strain, Ae. aegypti and Ae. albopictus wild type (WT) in the presence/absence of DENV. We observed notable alterations in skin immune cell phenotypes subsequent to exposure to Aedes salivary gland extract (SGE). Specifically, exposure lead to an increase in the frequency of macrophages expressing chemokine receptor CCR2, and neutrophils expressing CD69. Additionally, we noted a substantial increase in the percentage of macrophages that became infected with DENV in the presence of Aedes SGE. Differences in cellular responses were observed when Aedes SGE of three distinct mosquito strains were compared. Our findings deepen the understanding of mosquito saliva's role in DENV infection and skin immune responses in individuals regularly exposed to mosquito bites. This study provides insights into skin immune cell dynamics that could guide strategies to mitigate DENV transmission and other arbovirus diseases.

4.
Pathogens ; 13(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38668277

ABSTRACT

Currently, the responsible use of antimicrobials in pigs has allowed the continuous development of alternatives to these antimicrobials. In this study, we describe the impact of treatments with two probiotics, one based on live Saccharomyces cerevisiae (S. cerevisiae) and another based on fragmented S. cerevisiae (beta-glucans), that were administered to piglets at birth and at prechallenge with Mycoplasma hyopneumoniae. Thirty-two pigs were divided into four groups of eight animals each. The animals had free access to water and food. The groups were as follows: Group A, untreated negative control; Group B, inoculated by nebulization with M. hyopneumoniae positive control; Group C, first treated with disintegrated S. cerevisiae (disintegrated Sc) and inoculated by nebulization with M. hyopneumoniae; and Group D, treated with live S. cerevisiae yeast (live Sc) and inoculated by nebulization with M. hyopneumoniae. In a previous study, we found that on Days 1 and 21 of blood sampling, nine proinflammatory cytokines were secreted, and an increase in their secretion occurred for only five of them: TNF-α, INF-α, INF-γ, IL-10, and IL-12 p40. The results of the clinical evolution, the degree of pneumonic lesions, and the productive parameters of treated Groups C and D suggest that S. cerevisiae has an immunomodulatory effect in chronic proliferative M. hyopneumoniae pneumonia characterized by delayed hypersensitivity, which depends on the alteration or modulation of the respiratory immune response. The data presented in this study showed that S. cerevisiae contributed to the innate resistance of infected pigs.

5.
Int J Nanomedicine ; 19: 2639-2653, 2024.
Article in English | MEDLINE | ID: mdl-38500681

ABSTRACT

Introduction: We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS). Methods: Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control. Results: Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice. Conclusion: We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Niclosamide/pharmacology , Niclosamide/therapeutic use , Heterografts , Liver Neoplasms/pathology , Emulsions/chemistry , Drug Delivery Systems , Solubility , Biological Availability , Water , Lipids , Administration, Oral
6.
Viruses ; 16(3)2024 03 11.
Article in English | MEDLINE | ID: mdl-38543796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1ß concentrations, which was associated with an anti-inflammatory effect.


Subject(s)
Coronavirus Infections , Liposomes , Nanoparticles , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Mice , Antibodies, Viral , Porcine epidemic diarrhea virus/genetics , Glycyrrhizic Acid/pharmacology , Spike Glycoprotein, Coronavirus , Adjuvants, Immunologic , Immunity , Recombinant Proteins , Lipids
7.
Pharmaceutics ; 16(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38399249

ABSTRACT

The injury-triggered reocclusion (restenosis) of arteries treated with angioplasty to relieve atherosclerotic obstruction remains a challenge due to limitations of existing therapies. A combination of magnetic guidance and affinity-mediated arterial binding can pave the way to a new approach for treating restenosis by enabling efficient site-specific localization of therapeutic agents formulated in magnetizable nanoparticles (MNPs) and by maintaining their presence at the site of arterial injury throughout the vulnerability period of the disease. In these studies, we investigated a dual-targeted antirestenotic strategy using drug-loaded biodegradable MNPs, surface-modified with a fibrin-avid peptide to provide affinity for the injured arterial wall. The MNPs were characterized with regard to their magnetic properties, efficiency of surface functionalization, disassembly kinetics, and interaction with fibrin-coated substrates. The antiproliferative effects of MNPs formulated with paclitaxel were studied in vitro using a fetal cell line (A10) exhibiting the defining characteristics of neointimal smooth muscle cells. Animal studies examined the efficiency of combined (physical/affinity) MNP targeting to stented arteries in Sprague Dawley rats using fluorimetric analysis and fluorescent in vivo imaging. The antirestenotic effect of the dual-targeted therapy was determined in a rat model of in-stent restenosis 28 days post-treatment. The results showed that MNPs can be efficiently functionalized to exhibit a strong binding affinity using a simple two-step chemical process, without adversely affecting their size distribution, magnetic properties, or antiproliferative potency. Dual-targeted delivery strongly enhanced the localization and retention of MNPs in stented carotid arteries up to 7 days post-treatment, while minimizing redistribution of the carrier particles to peripheral tissues. Of the two targeting elements, the effect of magnetic guidance was shown to dominate arterial localization (p = 0.004 vs. 0.084 for magnetic targeting and peptide modification, respectively), consistent with the magnetically driven MNP accumulation step defining the extent of the ultimate affinity-mediated arterial binding and subsequent retention of the carrier particles. The enhanced arterial uptake and sustained presence of paclitaxel-loaded MNPs at the site of stent deployment were associated with a strong inhibition of restenosis in the rat carotid stenting model, with both the neointima-to-media ratio (N/M) and % stenosis markedly reduced in the dual-targeted treatment group (1.62 ± 0.2 and 21 ± 3 vs. 2.17 ± 0.40 and 29 ± 6 in the control animals; p < 0.05). We conclude that the dual-targeted delivery of antirestenotic agents formulated in fibrin-avid MNPs can provide a new platform for the safe and effective treatment of in-stent restenosis.

8.
Eur J Pharm Biopharm ; 193: 262-273, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944711

ABSTRACT

This study discusses the lubricant properties of magnesium stearate solid lipid nanoparticles (MgSt-SLN) and their effect on the tabletability, mechanical properties, disintegration, and acetaminophen-model dissolution time of microcrystalline cellulose (MCC) tablets prepared by direct compression. The behavior of MgSt-SLN was compared to reference material (RM) to identify advantages and drawbacks. The nanoprecipitation/ion exchange method was employed to prepare the MgSt-SLN. Particle size, zeta potential, specific surface area, morphology, and true density were measured to characterize the nanosystem. The MgSt-SLN particle sizes obtained were 240 ± 5 nm with a specific surface area of 12.2 m2/g. The MCC tablets with MgSt-SLN presented a reduction greater than 20 % in their ejection force, good tabletability, higher tensile strength, lower disintegration delay, and marked differences in acetaminophen dissolution when compared to the RM. The reduced particle size of the magnesium stearate seems to offer a promising technological advantage as an efficient lubricant process that does not affect the properties of tablets.


Subject(s)
Acetaminophen , Lubricants , Lubricants/chemistry , Stearic Acids/chemistry , Excipients/chemistry , Tablets/chemistry , Tensile Strength
9.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834378

ABSTRACT

Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.


Subject(s)
Endocrine Disruptors , Melatonin , Male , Rats , Animals , Melatonin/pharmacology , Vitamins , Molecular Docking Simulation , Semen/metabolism , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Reproduction , Receptors, Estrogen , Vitamin A , Vitamin K , Testosterone/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry
10.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686226

ABSTRACT

Food bioactive peptides are well recognized for their health benefits such as antimicrobial, antioxidant, and antihypertensive benefits, among others. Their drug-like behavior has led to their potential use in targeting skin-related aging factors like the inhibition of enzymes related with the skin-aging process. In this study, canary seed peptides (CSP) after simulated gastrointestinal digestion (<3 kDa) were fractioned by RP-HPLC and their enzyme-inhibition activity towards elastase and tyrosinase was evaluated in vitro. CSP inhibited elastase (IC50 = 6.2 mg/mL) and tyrosinase (IC50 = 6.1 mg/mL), while the hydrophobic fraction-VI (0.2 mg/mL) showed the highest inhibition towards elastase (93%) and tyrosinase (67%). The peptide fraction with the highest inhibition was further characterized by a multilevel in silico workflow, including physicochemical descriptor calculations, antioxidant activity predictions, and molecular dynamics-ensemble docking towards elastase and tyrosinase. To gain insights into the skin permeation process during molecular dynamics simulations, based on their docking scores, five peptides (GGWH, VPPH, EGLEPNHRVE, FLPH, and RPVNKYTPPQ) were identified to have favorable intermolecular interactions, such as hydrogen bonding of polar residues (W, H, and K) to lipid polar groups and 2-3 Å van der Waals close contact of hydrophobic aliphatic residues (P, V, and L). These interactions can play a critical role for the passive insertion of peptides into stratum corneum model skin-membranes, suggesting a promising application of CSP for skin-aging treatments.


Subject(s)
Monophenol Monooxygenase , Phalaris , Molecular Dynamics Simulation , Pancreatic Elastase , Seeds , Antioxidants/pharmacology
12.
Int J Cosmet Sci ; 45(6): 699-724, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37402111

ABSTRACT

The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.


Le terme biopolymère fait référence aux matériaux obtenus par modification chimique des substances biologiques naturelles ou ceux qui surviennent des processus biotechnologiques. Ils sont biodégradables, biocompatibles, et non-toxiques. Du à leur avantages, les biopolymères ont de larges applications dans les cosmétiques conventionnels ainsi que dans les nouvelles tendances, et se placent comme des ingrédients essentiels qui peut être utilise comme modificateurs rhéologiques, émulsifiants, producteurs de films, humectants, hydratants, antimicrobiens, et, plus récemment, comme matériaux avec activité métabolique sur la peau. Le développement d'approches compte tenu de ces caractéristiques constitue un défi pour la création de produits de soins capillaires, dermatologiques et buccodentaires. Cet article présente une vision sur l'utilisation des principaux biopolymères dans les produits cosmétiques, et décrit leurs sources, leur structures dérivées, les nouvelles applications, ainsi que les aspects de sécurité lies à leur utilisation comme molécules cosmétiques.


Subject(s)
Cosmetics , Biopolymers/chemistry , Emulsifying Agents
13.
Eplasty ; 23: e28, 2023.
Article in English | MEDLINE | ID: mdl-37305013

ABSTRACT

Background: Although breast implant techniques have advanced considerably since the first recorded augmentation procedure in 1895, rupture remains a significant complication. Proper diagnosis is vital for patients' well-being but can sometimes prove challenging when there is no documentation of the initial procedure. Methods: This report describes a 58-year-old woman with a 30-year history of subglandular periareolar breast augmentation who was referred for bilateral implant rupture identified on computed tomography performed to monitor a breast nodule. Results: Despite classic imaging findings suggesting bilateral intracapsular implant rupture, breast implant revision surgery revealed a dense capsule containing 6 small silicone implants with no ruptures. Conclusions: This is a unique case where radiographic imaging was misleading due to an undocumented unusual breast augmentation procedure that used multiple small "gnocchi-like" silicone implants. To our knowledge, this technique has never been described until now and should be noted by the surgical and radiological community.

14.
Pathogens ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986421

ABSTRACT

Haemonchus contortus (Hc) is an important parasitic nematode of small ruminants. In this study we assembled the transcriptome of Hc as a model to contribute to the knowledge about the profile of the differential gene expression between two Mexican Hc strains under different anthelmintic resistance statuses, one susceptible and the other resistant to ivermectin (IVMs and IVMr, respectively), in order to improve and/or to have new strategies of control and diagnosis. The transcript sequence reads were assembled and annotated. Overall, ~127 Mbp were assembled and distributed into 77,422 transcript sequences, and 4394 transcripts of the de novo transcriptome were matched base on at least one of the following criteria: (1) Phylum Nemathelminthes and Platyhelminthes, important for animal health care, and (2) ≥55% of sequence identity with other organisms. The gene ontology (GO) enrichment analysis (GOEA) was performed to study the level of gene regulation to IVMr and IVMs strains using Log Fold Change (LFC) filtering values ≥ 1 and ≥ 2. The upregulated-displayed genes obtained via GOEA were: 1993 (for LFC ≥ 1) and 1241 (for LFC ≥ 2) in IVMr and 1929 (for LFC ≥ 1) and 835 (for LFC ≥ 2) in IVMs. The enriched GO terms upregulated per category identified the intracellular structure, intracellular membrane-bounded organelle and integral component of the cell membrane as some principal cellular components. Meanwhile, efflux transmembrane transporter activity, ABC-type xenobiotic transporter activity and ATPase-coupled transmembrane transporter activity were associated with molecular function. Responses to nematicide activity, pharyngeal pumping and positive regulation of synaptic assembly were classified as biological processes that might be involved in events related to the anthelmintic resistance (AR) and nematode biology. The filtering analysis of both LFC values showed similar genes related to AR. This study deepens our knowledge about the mechanisms behind the processes of H. contortus in order to help in tool production and to facilitate the reduction of AR and promote the development of other control strategies, such as anthelmintic drug targets and vaccines.

15.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904450

ABSTRACT

Solid lipid nanoparticles (SLN) based on candelilla wax were prepared using the hot homogenization technique. The resulting suspension had monomodal behavior with a particle size of 809-885 nm; polydispersity index < 0.31, and zeta potential of -3.5 mV 5 weeks after monitoring. The films were prepared with SLN concentrations of 20 and 60 g/L, each with a plasticizer concentration of 10 and 30 g/L; the polysaccharide stabilizers used were either xanthan gum (XG) or carboxymethyl cellulose (CMC) at 3 g/L. The effects of temperature, film composition, and relative humidity on the microstructural, thermal, mechanical, and optical properties, as well as the water vapor barrier, were evaluated. Higher amounts of SLN and plasticizer gave the films greater strength and flexibility due to the influence of temperature and relative humidity. The water vapor permeability (WVP) was lower when 60 g/L of SLN was added to the films. The arrangement of the SLN in the polymeric networks showed changes in the distribution as a function of the concentrations of the SLN and plasticizer. The total color difference (ΔE) was greater when the content of the SLN was increased, with values of 3.34-7.93. Thermal analysis showed an increase in the melting temperature when a higher SLN content was used, whereas a higher plasticizer content reduced it. Edible films with the most appropriate physical properties for the packaging, shelf-life extension, and improved quality conservation of fresh foods were those made with 20 g/L of SLN, 30 g/L of glycerol, and 3 g/L of XG.

16.
Pathogens ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678472

ABSTRACT

Goat production in Mexico is an important economic activity that is affected by different gastrointestinal nematode (GIN) species. GINs resistant to commercial anthelmintics have been reported. Plant extracts or agro-industrial by-products, such as coffee pulp, have been proposed as control alternatives, given their secondary metabolite content. The aim of the present study was to determine the anthelmintic activity of the hydroalcoholic extract of coffee pulp against benzimidazole-resistant GINs. Stool samples were collected from goats, from which GIN eggs were identified and quantified. Molecular techniques confirmed the genus of GINs and their benzimidazole resistance profile. The percentage of egg hatching inhibition (% EHI) and larval mortality (% LM) with the hydroalcoholic extract of coffee pulp was determined at concentrations from 200 to 0.39 mg/mL. The genera Haemonchus spp. and Trichostrongylus spp. were identified, and the presence of the ß-tubulin gene mutation, associated with benzimidazole (BZ) resistance, was determined. Hydroalcoholic extract of coffee pulp inhibited 100% of egg hatching at 200 and 100 mg/mL, with no larvicidal effect at the evaluated concentrations.

17.
Aesthet Surg J ; 43(6): NP449-NP465, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36611261

ABSTRACT

BACKGROUND: Autologous fat grafting, although broadly indicated, is limited by unsatisfactory retention and often requires multiple procedures to achieve durable outcomes. Graft survival is strongly influenced by the magnitude and duration of post-engraftment ischemia. Calcitriol is a pleiotropic, safe nutrient with cell-specific influence on viability and metabolic flux. OBJECTIVES: Evaluate the efficacy of activated vitamin D3 (calcitriol) in improving grafting outcomes and examine its mechanisms. METHODS: Lipoaspirate was collected for ex vivo culture (7 unique donors), in vitro bioenergetic analysis (6 unique donors), and in vivo transplantation (5 unique donors). Ex vivo samples were incubated for up to 2 weeks before extraction of the stromal vascular fraction (SVF) for viability or flow cytometry. SVF was collected for Seahorse (Agilent; Santa Clara, CA) analysis of metabolic activity. Human endothelial cell lines were utilized for analyses of endothelial function. In vivo, samples were implanted into athymic mice with calcitriol treatment either (1) once locally or (2) 3 times weekly via intraperitoneal injection. Grafts were assessed photographically, volumetrically, and histologically at 1, 4, and 12 weeks. Hematoxylin and eosin (H&E), Sirius red, perilipin, HIF1α, and CD31 tests were performed. RESULTS: Calcitriol-treated lipoaspirate demonstrated dose-dependent increases in SVF viability and metabolic reserve during hypoxic stress. Calcitriol treatment enhanced endothelial mobility ex vivo and endothelial function in vitro. In vivo, calcitriol enhanced adipocyte viability, reduced fibrosis, and improved vascularity. Continuous calcitriol was sufficient to improve graft retention at 12 weeks (P < .05). CONCLUSIONS: Calcitriol increased fat graft retention in a xenograft model. Calcitriol has potential to be a simple, economical means of increasing fat graft retention and long-term outcomes.


Subject(s)
Adipose Tissue , Calcitriol , Mice , Animals , Humans , Adipose Tissue/transplantation , Calcitriol/pharmacology , Cholecalciferol/pharmacology , Heterografts , Adipocytes/transplantation , Disease Models, Animal , Graft Survival
18.
Mol Biochem Parasitol ; 253: 111545, 2023 02.
Article in English | MEDLINE | ID: mdl-36681328

ABSTRACT

The aim of this study was to evaluate the in vitro immune modulation of two de novo peptides with hypothetical identity to the serine protease family (S28) from Haemonchus spp. Expression of mRNAs encoding these peptides was confirmed by RTqPCR in L3 and adult stage parasites. Antibodies from serum samples collected from an H. contortus-infected lamb at 60 days post infection detected both peptides, as assessed by indirect ELISA. Lamb peripheral blood mononuclear cells (PBMCs) were exposed to each peptide, as well as to the peptide mixture, and cell proliferation assays were performed at 24, 48 and 72 h. The relative expression of the IL4, IL5, IL6, IL13, CXCL8 and FCεR1A genes was quantified by RTqPCR from lamb PBMCs exposed to the peptide mixture at 24 and 48 h. With respect to immune gene expression, 15- and 3-fold upregulation at 24 h was observed with IL5 and CXCL8, respectively, and 2-fold upregulation of CXCL8 at 48 h. In contrast, downregulation of IL5 was stimulated at 48 h. These data suggest that these peptides (pep-hsp and pep-pcx), which show high identity with intestinal and excretion/secretion serine proteases, can trigger immunogenic activity, and suggest that they may be useful as potential parasite vaccines.


Subject(s)
Haemonchiasis , Haemonchus , Animals , Sheep , Leukocytes, Mononuclear/metabolism , Serine Proteases/genetics , Serine Proteases/metabolism , Haemonchus/genetics , Interleukin-5/genetics , Interleukin-5/metabolism , Up-Regulation , Haemonchiasis/veterinary , Haemonchiasis/metabolism
19.
Am Surg ; 89(1): 49-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35570822

ABSTRACT

The technology of artificial intelligence (AI) has made significant in-roads into the field of medicine over the last decade. With surgery being a discipline where repetition is the key to mastery, the scope of AI presents enormous potential for resident education through the analysis of technique and delivery of structured feedback for performance improvement. In an era marred by a raging pandemic that has decreased exposure and opportunity, AI offers an attractive solution towards improving operating room efficiency, safe patient care in the hands of supervised residents and can ultimately culminate in reduced health care costs. Through this article, we elucidate the current adoption of the artificial intelligence technology and its prospects for advancing surgical education.


Subject(s)
Artificial Intelligence , Internship and Residency , Humans , Clinical Competence , Educational Status
20.
Wound Repair Regen ; 31(1): 120-127, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36053849

ABSTRACT

Robust and predictive pre-clinical models of recalcitrant diabetic wounds are critical for advancing research efforts toward improving healing. Murine models have logistic and genetic benefits versus larger animals; however, native murine healing inadequately represents clinically recalcitrant wounds in humans. Furthermore, current humanization techniques employing devices, deleterious mutations or chemical agents each carry model-specific limitations. To better replicate human wounds in a mouse, we developed a novel wound-edge inversion (WEI) technique that mimics the architecture of epibole and mitigates contracture, epithelialization, and consequently wound closure. In this study, we evaluated the reliability and durability of the WEI model in wild-type and obese diabetic mice and compared to healing after (i) punch biopsy, (ii) mechanical/silicone stenting or (iii) exogenous oxidative stressors. In wild-type mice, WEI demonstrated favourable closure characteristics compared to both control and stented wounds, however, wounds progressed to closure by 4 weeks. In contrast, diabetic WEI wounds persisted for 6-10 weeks with reduced contracture and epithelialization. In both diabetic and wild-type mice, WEI sites demonstrated persistence of inflammatory populations, absence of epithelialization, and histologic presence of alpha-SMA positive granulation tissue when compared to controls. We conclude that the WEI technique is particularly valuable for modelling recalcitrant diabetic wounds with sustained inflammation and dysfunctional healing.


Subject(s)
Diabetes Mellitus, Experimental , Wound Healing , Mice , Humans , Animals , Diabetes Mellitus, Experimental/pathology , Reproducibility of Results , Skin/pathology , Re-Epithelialization
SELECTION OF CITATIONS
SEARCH DETAIL