Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Physiol ; 15: 1395846, 2024.
Article in English | MEDLINE | ID: mdl-38660539

ABSTRACT

Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 µmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 µmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.

2.
Front Physiol ; 14: 1253856, 2023.
Article in English | MEDLINE | ID: mdl-37664439

ABSTRACT

Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)-when coinherited-that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies.

3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569737

ABSTRACT

Hyperbaric oxygen therapy (HBOT) is a therapeutical approach based on exposure to pure oxygen in an augmented atmospheric pressure. Although it has been used for years, the exact kinetics of the reactive oxygen species (ROS) between different pressures of hyperbaric oxygen exposure are still not clearly evidenced. In this study, the metabolic responses of hyperbaric hyperoxia exposures for 1 h at 1.4 and 2.5 ATA were investigated. Fourteen healthy non-smoking subjects (2 females and 12 males, age: 37.3 ± 12.7 years old (mean ± SD), height: 176.3 ± 9.9 cm, and weight: 75.8 ± 17.7 kg) volunteered for this study. Blood samples were taken before and at 30 min, 2 h, 24 h, and 48 h after a 1 h hyperbaric hyperoxic exposure. The level of oxidation was evaluated by the rate of ROS production, nitric oxide metabolites (NOx), and the levels of isoprostane. Antioxidant reactions were assessed through measuring superoxide dismutase (SOD), catalase (CAT), cysteinylglycine, and glutathione (GSH). The inflammatory response was measured using interleukine-6, neopterin, and creatinine. A short (60 min) period of mild (1.4 ATA) and high (2.5 ATA) hyperbaric hyperoxia leads to a similar significant increase in the production of ROS and antioxidant reactions. Immunomodulation and inflammatory responses, on the contrary, respond proportionally to the hyperbaric oxygen dose. Further research is warranted on the dose and the inter-dose recovery time to optimize the potential therapeutic benefits of this promising intervention.


Subject(s)
Hyperbaric Oxygenation , Hyperoxia , Male , Female , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Kinetics , Oxygen , Oxidative Stress/physiology
4.
Article in English | MEDLINE | ID: mdl-37569056

ABSTRACT

Long-term alterations of pulmonary function (mainly decreased airway conductance and capacity of the lungs to diffuse carbon monoxide (DLCO)) have been described after hyperbaric exposures. However, whether these alterations convey a higher risk for divers' safety has never been investigated before. The purpose of the present pilot study was to assess whether decreased DLCO is associated with modifications of the physiological response to diving. In this case-control observational study, 15 "fit-to-dive" occupational divers were split into two groups according to their DLCO measurements compared to references values, either normal (control) or reduced (DLCO group). After a standardized 20 m/40 min dive in a sea water pool, the peak-flow, vascular gas emboli (VGE) grade, micro-circulatory reactivity, inflammatory biomarkers, thrombotic factors, and plasmatic aldosterone concentration were assessed at different times post-dive. Although VGE were recorded in all divers, no cases of decompression sickness (DCS) occurred. Compared to the control, the latency to VGE peak was increased in the DLCO group (60 vs. 30 min) along with a higher maximal VGE grade (p < 0.0001). P-selectin was higher in the DLCO group, both pre- and post-dive. The plasmatic aldosterone concentration was significantly decreased in the control group (-30.4 ± 24.6%) but not in the DLCO group. Apart from a state of hypocoagulability in all divers, other measured parameters remained unchanged. Our results suggest that divers with decreased DLCO might have a higher risk of DCS. Further studies are required to confirm these preliminary results.


Subject(s)
Decompression Sickness , Diving , Humans , Decompression Sickness/epidemiology , Carbon Monoxide , Aldosterone , Pilot Projects , Diving/adverse effects , Diving/physiology , Lung
5.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373334

ABSTRACT

In this study, the metabolic responses of hypoxic breathing for 1 h to inspired fractions of 10% and 15% oxygen were investigated. To this end, 14 healthy nonsmoking subjects (6 females and 8 males, age: 32.2 ± 13.3 years old (mean ± SD), height: 169.1 ± 9.9 cm, and weight: 61.6 ± 16.2 kg) volunteered for the study. Blood samples were taken before, and at 30 min, 2 h, 8 h, 24 h, and 48 h after a 1 h hypoxic exposure. The level of oxidative stress was evaluated by considering reactive oxygen species (ROS), nitric oxide metabolites (NOx), lipid peroxidation, and immune-inflammation by interleukin-6 (IL-6) and neopterin, while antioxidant systems were observed in terms of the total antioxidant capacity (TAC) and urates. Hypoxia abruptly and rapidly increased ROS, while TAC showed a U-shape pattern, with a nadir between 30 min and 2 h. The regulation of ROS and NOx could be explained by the antioxidant action of uric acid and creatinine. The kinetics of ROS allowed for the stimulation of the immune system translated by an increase in neopterin, IL-6, and NOx. This study provides insights into the mechanisms through which acute hypoxia affects various bodily functions and how the body sets up the protective mechanisms to maintain redox homeostasis in response to oxidative stress.


Subject(s)
Antioxidants , Interleukin-6 , Male , Humans , Adolescent , Young Adult , Adult , Middle Aged , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Neopterin/metabolism , Interleukin-6/metabolism , Kinetics , Oxidative Stress/physiology , Hypoxia/metabolism , Oxidation-Reduction
6.
Int Marit Health ; 74(1): 36-44, 2023.
Article in English | MEDLINE | ID: mdl-36974491

ABSTRACT

BACKGROUND: Scientific underwater exploration could benefit from professional diving facilities. This could allow marine research for durations far exceeding anything currently possible. The closed-circuit rebreather expansion provides new perspectives by unleashing divers and their diving bell. "Under the Pole Expeditions" developed an innovative compact underwater habitat for this purpose. MATERIALS AND METHODS: The habitat's depth was fixed at 20 m. Saturation lasted 3 days and was followed by a 245 min long decompression procedure with mandatory in-water phase. Isolation and environmental constraints will require specific medical and safety procedures. "In situ" medical concerns were considered, and a specific evacuation plan was established. This report describes the medical management of this atypical project and the systematic clinical follow-up mostly targeted on the cardiovascular system, fatigue and psychological tolerance. RESULTS: Seventeen individual saturation exposures were performed. All selected divers were professional. Neither severe illness nor decompression sickness was observed. These short-term saturation exposures appeared to be well tolerated. There was a relatively low bubble grade after decompression. Psychological tolerance appeared good. However, a transient moderate orthostatic hypotension suggested cardiovascular deconditioning after dive. CONCLUSIONS: This first experiment demonstrates the interest and feasibility of a shallow revisited saturation dive with rebreather use. This isolation requires medical accompaniment and rigorous preparation. Medical and physiological risks assessment is essential in this context and must be consolidated by new experiences.


Subject(s)
Decompression Sickness , Diving , Expeditions , Humans , Diving/adverse effects , Diving/physiology , Decompression Sickness/therapy , Decompression/methods , Ecosystem
7.
Front Physiol ; 14: 1293752, 2023.
Article in English | MEDLINE | ID: mdl-38321986

ABSTRACT

Objective: present transcutaneous carbon dioxide (CO2)-tcpCO2-monitors suffer from limitations which hamper their widespread use, and call for a new tcpCO2 measurement technique. However, the progress in this area is hindered by the lack of knowledge in transcutaneous CO2 diffusion. To address this knowledge gap, this study focuses on investigating the influence of skin temperature on two key skin properties: CO2 permeability and skin blood flow. Methods: a monocentric prospective exploratory study including 40 healthy adults was undertaken. Each subject experienced a 90 min visit split into five 18 min sessions at different skin temperatures-Non-Heated (NH), 35, 38, 41, and 44°C. At each temperature, custom sensors measured transcutaneous CO2 conductivity and exhalation rate at the arm and wrist, while Laser Doppler Flowmetry (LDF) assessed skin blood flow at the arm. Results: the three studied metrics sharply increased with rising skin temperature. Mean values increased from the NH situation up to 44°C from 4.03 up to 8.88 and from 2.94 up to 8.11 m·s-1 for skin conductivity, and from 80.4 up to 177.5 and from 58.7 up to 162.3 cm3·m-2·h-1 for exhalation rate at the arm and wrist, respectively. Likewise, skin blood flow increased elevenfold for the same temperature increase. Of note, all metrics already augmented significantly in the 35-38°C skin temperature range, which may be reached without active heating-i.e. only using a warm clothing. Conclusion: these results are extremely encouraging for the development of next-generation tcpCO2 sensors. Indeed, the moderate increase (× 2) in skin conductivity from NH to 44°C tends to indicate that heating the skin is not critical from a response time point of view, i.e. little to no skin heating would only result in a doubled sensor response time in the worst case, compared to a maximal heating at 44°C. Crucially, a skin temperature within the 35-38°C range already sharply increases the skin blood flow, suggesting that tcpCO2 correlates well with the arterial paCO2 even at such low skin temperatures. These two conclusions further strengthen the viability of non-heated tcpCO2 sensors, thereby paving the way for the development of wearable transcutaneous capnometers.

8.
Front Public Health ; 10: 937774, 2022.
Article in English | MEDLINE | ID: mdl-36249234

ABSTRACT

Introduction: Welding fumes (WF) are a complex mixture of gas and particles. Action of occupational exposure to WF on cardiovascular system has been recently studied as for noise. Research question: The main objectives of our study are therefore to evaluate the impact of exposure to WF, noise, and combined WF and noise on autonomic nervous system as assessed by heart rate variability (HRV). Methods: The study groups were 16 welders and eight airport workers (as a control group). All the participants underwent ambulatory electrocardiogram, personal WF, and noise exposure monitoring, respectively, with dust track and calibrated noise dosimeter during workday. Atmospheric environmental assessments at workplaces have been also performed. HRV parameters were summarized for all the workday and hourly. Correlation tests were used to examine relation between HRV parameters and levels of noise exposure in the two population. Analysis of covariance (ANCOVA) was used for mean of each HRV parameters. Results: For HRV parameters, we found significant higher levels for mean range of high frequency (HF), standard deviation of normal-to-normal R-R interval (SDNN), and root mean square of successive heartbeat interval difference (RMSSD) in welders which suggested an imbalance between sympathetic and parasympathetic nervous system in this population. For relation between noise and HRV parameters, we noted that levels of low frequency (LF), HF, and SDNN were significantly correlated with mean noise levels for welders (respectively, r = 0.62, r = 0.357, r = 0.48), not in control group. Using ANCOVA, we found that working as a welder significantly increases mean of HF (p = 0.01) and RMSSD (p = 0.02) and decreases in LF/HF (p = 0.008). Indeed, the interaction between exposure to WF and mean noise levels for HF (p = 0.005), LF/HF (p = 0.01), and RMSSD (p = 0.007) was significant. Conclusion: This study shows an impact of WF and noise on ANS balance. One hypothesis is WF exposure could increase sensibility to noise exposure on autonomic nervous system or there is a synergic effect.


Subject(s)
Occupational Exposure , Welding , Airports , Complex Mixtures/pharmacology , Dust , Heart Rate/physiology , Humans , Metal Workers , Occupational Exposure/adverse effects
9.
Diving Hyperb Med ; 52(2): 119-125, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35732284

ABSTRACT

INTRODUCTION: Susceptibility to decompression sickness (DCS) is characterised by a wide inter-individual variability whose origins are still poorly understood. This hampers reliable prediction of DCS by decompression algorithms. We previously selectively bred rats with a 3-fold greater resistance to DCS than standard rats. Based on its previously reported relation with decompression outcomes, we assessed whether modification in vascular function is associated with resistance to DCS. METHODS: The arterial pressure response to intravenous administration of acetylcholine (ACh, 5 µg.kg-1) and adrenaline (5 and 10 µg.kg-1) was compared in anaesthetised DCS-resistant rats (seven females, seven males) and standard Wistar rats (seven females, 10 males) aged 14-15 weeks. None of these rats had previously undergone hyperbaric exposure. RESULTS: There was a non-significant tendency for a lower diastolic (DBP) and mean blood pressure (MBP) in DCS-resistant rats. After ACh administration, MBP was significantly lower in resistant rats, for both males (P = 0.007) and females (P = 0.034). After administration of adrenaline 10 µg.kg-1, DCS-resistant rats exhibited lower maximal DBP (P = 0.016) and MBP (P = 0.038). Systolic and pulse blood pressure changes did not differ between groups in any of the experiments. CONCLUSIONS: Resistance to DCS in rats is associated to a trend towards a lower vascular tone but not blood pressure reactivity. Whether these differences are a component of the susceptibility to DCS remains to be confirmed.


Subject(s)
Decompression Sickness , Diving , Animals , Blood Pressure , Decompression , Diving/physiology , Epinephrine/pharmacology , Female , Humans , Male , Rats , Rats, Wistar
11.
Eur J Appl Physiol ; 122(2): 515-522, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34839432

ABSTRACT

PURPOSE: Data regarding decompression stress after deep closed-circuit rebreather (CCR) dives are scarce. This study aimed to monitor technical divers during a wreck diving expedition and provide an insight in venous gas emboli (VGE) dynamics. METHODS: Diving practices of ten technical divers were observed. They performed a series of three consecutive daily dives around 100 m. VGE counts were measured 30 and 60 min after surfacing by both cardiac echography and subclavian Doppler graded according to categorical scores (Eftedal-Brubakk and Spencer scale, respectively) that were converted to simplified bubble grading system (BGS) for the purpose of analysis. Total body weight and fluids shift using bioimpedancemetry were also collected pre- and post-dive. RESULTS: Depth-time profiles of the 30 recorded man-dives were 97.3 ± 26.4 msw [range: 54-136] with a runtime of 160 ± 65 min [range: 59-270]. No clinical decompression sickness (DCS) was detected. The echographic frame-based bubble count par cardiac cycle was 14 ± 13 at 30 min and 13 ± 13 at 60 min. There is no statistical difference neither between dives, nor between time of measurements (P = 0.07). However, regardless of the level of conservatism used, a high incidence of high-grade VGE was detected. Doppler recordings with the O'dive were highly correlated with echographic recordings (Spearman r of 0.81, P = 0.008). CONCLUSION: Although preliminary, the present observation related to real CCR deep dives questions the precedence of decompression algorithm over individual risk factors and pleads for an individual approach of decompression.


Subject(s)
Decompression Sickness/prevention & control , Diving/physiology , Equipment and Supplies , Adult , Echocardiography , Electric Impedance , Embolism, Air/prevention & control , Helium , Humans , Male , Middle Aged , Nitrogen , Oxygen , Risk Factors
12.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614106

ABSTRACT

Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.


Subject(s)
Hyperoxia , Female , Humans , Male , Antioxidants/metabolism , Hyperoxia/metabolism , Oxidative Stress , Oxygen/pharmacology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Adolescent , Young Adult , Adult
13.
Int Marit Health ; 72(3): 217-222, 2021.
Article in English | MEDLINE | ID: mdl-34604992

ABSTRACT

BACKGROUND: Divers thermal status influences susceptibility to decompression sickness hence the need for proper insulation during immersion in cold water. However, there is a lack of data on thermal protection provided by diving suits, hence this study. MATERIALS AND METHODS: Two different groups of divers wearing either a wetsuit (n = 15) or a dry suit (n = 15) volunteered for this study. Anthropometric data and dive experience were recorded; skin temperatures at the cervical-supraclavicular (C-SC) area and hands were assessed through high-resolution thermal infrared imaging taken pre- and post-dive. RESULTS: As far as anthropometrics, pre-dive C-SC temperatures (37.0 ± 0.4°C), depth (dry: 43 ± 4.6 mfw vs. wet: 40.3 ± 4.0 mfw) and water temperature exposure (4.3°C) are concerned, both groups were comparable. Total dive time was slightly longer for dry suit divers (39.6 ± 4.0 min vs. 36.5 ± 4.1 min, p = 0.049). Post-dive, C-SC temperature was increased in dry suit divers by 0.6 ± 0.6°C, and significantly decreased in wetsuit divers by 0.8 ± 0.6°C. The difference between groups was highly significant (dry: 37.5 ± 0.7°C vs. wet: 36.2 ± 0.7°C, p = 0.004). Hand's temperature decreased significantly in both groups (dry: 30.3 ± 1.2°C vs. wet: 29.8 ± 0.8°C, p = 0.33). Difference between groups was not significant. CONCLUSIONS: Medium-duration immersion in cold water (< 5°C), of healthy and fully protected subjects was well tolerated. It was demonstrated that proper insulation based on a three-layer strategy allows maintaining or even slightly improve thermal balance. However, from an operational point of view, skin extremities are not preserved.


Subject(s)
Diving , Immersion , Cold Temperature , Humans , Skin Temperature , Temperature , Water
15.
Eur J Appl Physiol ; 121(12): 3323-3331, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34435274

ABSTRACT

PURPOSE: Deep diving using mixed gas with closed-circuit rebreathers (CCRs) is increasingly common. However, data regarding the effects of these dives are still scarce. This preliminary field study aimed at evaluating the acute effects of deep (90-120 msw) mixed-gas CCR bounce dives on lung function in relation with other physiological parameters. METHODS: Seven divers performed a total of sixteen open-sea CCR dives breathing gas mixture of helium, nitrogen and oxygen (trimix) within four days at 2 depths (90 and 120 msw). Spirometric parameters, SpO2, body mass, hematocrit, short term heart rate variability (HRV) and critical flicker fusion frequency (CFFF) were measured at rest 60 min before the dive and 120 min after surfacing. RESULTS: The median [1st-3rd quartile] of the forced vital capacity was lower (84% [76-93] vs 91% [74-107] of predicted values; p = 0.029), whereas FEV1/FVC was higher (98% [95-99] vs 95% [89-99]; p = 0.019) after than before the dives. The other spirometry values and SpO2 were unchanged. Body mass decreased from 73.5 kg (72.0-89.6) before the dives to 70.0 kg (69.2-85.8) after surfacing (p = 0.001), with no change of hematocrit or CFFT. HRV was increased as indicated by the higher SDNN, RMSSD and pNN50 after than before dives. CONCLUSION: The present observation represents the first original data regarding the effects of deep repeated CCR dives. The body mass loss and decrease of FVC after bounce dives at depth of about 100 msw may possibly impose an important physiological stress for the divers.


Subject(s)
Diving/physiology , Helium , Nitrogen , Oxygen , Adult , Equipment Design , Heart Rate/physiology , Humans , Male , Pilot Projects , Respiratory Protective Devices , Spirometry , Tidal Volume
16.
Sci Rep ; 11(1): 8317, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859311

ABSTRACT

On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the fecal metabolome from rat caecum. On the other side, there is high inter-individual variability in terms of occurrence of DCS. One could wonder whether the fecal metabolome could be linked to the DCS-susceptibility. We decided to study male and female rats selected for their resistance to decompression sickness, and we hypothesize a strong impregnation concerning the fecal metabolome. The aim is to verify whether the rats resistant to the accident have a fecal metabolomic signature different from the stem generations sensitive to DCS. 39 DCS-resistant animals (21 females and 18 males), aged 14 weeks, were compared to 18 age-matched standard Wistar rats (10 females and 8 males), i.e., the same as those we used for the founding stock. Conventional and ChemRICH approaches helped the metabolomic interpretation of the 226 chemical compounds analyzed in the cecal content. Statistical analysis shows a panel of 81 compounds whose expression had changed following the selection of rats based on their resistance to DCS. 63 compounds are sex related. 39 are in common. This study shows the spectral fingerprint of the fecal metabolome from the caecum of a strain of rats resistant to decompression sickness. This study also confirms a difference linked to sex in the metabolome of non-selected rats, which disappear with selective breeding. Results suggest hormonal and energetic reshuffle, including steroids sugars or antibiotic compounds, whether in the host or in the microbial community.


Subject(s)
Cecum/metabolism , Decompression Sickness/genetics , Decompression Sickness/metabolism , Genetic Predisposition to Disease/genetics , Metabolome/genetics , Animals , Female , Male , Rats , Rats, Wistar , Sex Characteristics
17.
Diving Hyperb Med ; 50(3): 214-219, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32957122

ABSTRACT

INTRODUCTION: The effects of scuba diving on the vessel wall have been studied mainly at the level of large conduit arteries. Data regarding the microcirculation are scarce and indicate that these two vascular beds are affected differently by diving. METHODS: We assessed the changes in cutaneous microcirculation before an air scuba dive, then 30 min and 24 h after surfacing. Endothelium-dependent and independent vasomotion were successively elicited by iontophoretic administration of acetylcholine and sodium nitroprusside respectively, and cutaneous blood flux was monitored by laser Doppler flowmetry. RESULTS: The response to sodium nitroprusside was significantly lower 30 min after surfacing than before diving (50 (SEM 6)% of the pre-dive values, P = 0.0003) and returned to normal values 24 h post-dive (102 (29)% of the pre-dive values, P = 0.113). When compared to pre-dive values, acetylcholine elicited a hyperaemia which was not statistically different 30 min after surfacing (123 (17)% of the pre-dive values, P = 0.230), but significantly increased 24 h post-dive (148 (10)% of the pre-dive values, P = 0.005). CONCLUSION: Microvascular smooth muscle function is transiently impaired after diving. On the contrary, microvascular endothelial function is enhanced for up to 24 h after diving. This further suggests that the microcirculation reacts differently than large conduit arteries to scuba diving. The impact of modifications occurring in the microvascular bed on the physiological effects of diving merits further study.


Subject(s)
Diving , Endothelium , Microcirculation
18.
Diving Hyperb Med ; 50(3): 288-291, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32957132

ABSTRACT

INTRODUCTION: Hydration status is considered a parameter likely to influence the risk of decompression sickness (DCS), but scientific evidence is scarce and conflicting. This experiment aimed to analyse the influence of pre-hydration on DCS occurrence in a rat model. METHODS: Intra-peritoneal injections of saline solution were administered to rats (NaCl 0.9% 0 ml (Control), 0.1 ml (Group 1), or 1 ml·100g-1 body mass (Group 2) at each of 24 h, 12 h, and 30 min prior to simulated air dives (45 min at 1,010 kPa; compression and decompression rates 101 kPa·min-1; stops 5 min at 202 kPa, 5 min at 160 kPa, 10 min at 130 kPa). Evaluation of DCS occurrence and severity was made after decompression. RESULTS: Pre-dive hydration reduced severe DCS from 47% (Control) to 29% (Group 1) and 0% (Group 2), and increased the proportion of animals without any signs of DCS from 40 (Control) to 57% (Group 1) and 93% (Group 2); Chi2 P = 0.041. CONCLUSIONS: This experiment demonstrated that pre-hydration can drastically reduce the DCS occurrence in an animal model. In the context of scuba diving, this result highlights the importance of elucidating the mechanisms linking hydration status and DCS risk.


Subject(s)
Decompression Sickness , Diving , Animals , Decompression , Decompression Sickness/prevention & control , Disease Models, Animal , Physical Phenomena , Rats
19.
J Appl Physiol (1985) ; 129(3): 612-625, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32702269

ABSTRACT

Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome. Compared with nonresistant rats, the neutrophil-to-lymphocyte ratio and the plasmatic activity of coagulation factor X were significantly higher in DCS-resistant individuals regardless of their sex. The maximal relaxation elicited by sodium nitroprusside was lower in DCS-resistant individuals regardless of their sex. Males but not females resistant to DCS exhibited higher neutrophil and lymphocyte counts and higher prothrombin time but lower mitochondrial basal O2 consumption and citrate synthase activity. Principal components analysis showed that two principal components discriminate the DCS-resistant males but not females from the nonresistant ones. These components were loaded with activated partial thromboplastin time, monocyte-to-lymphocyte ratio, prothrombin time, factor X, and fibrinogen for PC1 and red blood cells count and neutrophils count for PC2. In conclusion, the mechanisms that drive the resistance to DCS appear different between males and females; lower coagulation tendency and enhanced inflammatory response to decompression stress might be key for resistance in males. The involvement of these physiological adaptations in resistance to DCS must now be confirmed.NEW & NOTEWORTHY By selective breeding of individuals resistant to decompression sickness (DCS) we previously obtained a rat model of inherited resistance to this pathology. Comparison of these individuals with nonresistant animals revealed differences in leukocyte counts, coagulation, and mitochondrial and vascular functions, but not resistance to oxidative stress. This study also reveals sex-related differences in the physiological changes associated with DCS resistance. A principal components analysis of our data allowed us to discriminate DCS-resistant males from standard ones, but not females. These differences represent possible mechanisms driving resistance to DCS. Although still far from the diver, this opens a pathway to future adaptation of personalized decompression procedures for "DCS-prone" individuals.


Subject(s)
Decompression Sickness , Diving , Animals , Blood Coagulation , Decompression , Female , Male , Rats , Rats, Wistar
20.
Med Sci Sports Exerc ; 52(10): 2127-2135, 2020 10.
Article in English | MEDLINE | ID: mdl-32251255

ABSTRACT

For three decades, studies have demonstrated the therapeutic efficacy of perfluorocarbon (PFC) in reducing the onset of decompression trauma. However, none of these emulsion-based preparations are accepted for therapeutic use in the western world, mainly because of severe side effects and a long organ retention time. A new development to guarantee a stable dispersion without these disadvantages is the encapsulation of PFC in nanocapsules with an albumin shell. PURPOSE: Newly designed albumin-derived perfluorocarbon-based artificial oxygen carriers (A-AOC) are used in a rodent in vivo model as a preventive therapy for decompression sickness (DCS). METHODS: Thirty-seven rats were treated with A-AOC (n = 12), albumin nanocapsules filled with neutral oil (A-O-N, n = 12), or 5% human serum albumin solution (A-0-0, n = 13) before a simulated dive. Eleven rats, injected with A-AOC, stayed at normal pressure (A-AOC surface). Clinical, laboratory, and histological evaluations were performed. RESULTS: The occurrence of DCS depended on the treatment group. A-AOC significantly reduced DCS appearance and mortality. Furthermore, a significant improvement of survival time was found (A-AOC compared with A-0-0). Histological assessment of A-AOC-dive compared with A-0-0-dive animals revealed significantly higher accumulation of macrophages, but less blood congestion in the spleen and significantly less hepatic circulatory disturbance, vacuolization, and cell damage. Compared with nondiving controls, lactate and myoglobin showed a significant increase in the A-0-0- but not in the A-AOC-dive group. CONCLUSION: Intravenous application of A-AOC was well tolerated and effective in reducing the occurrence of DCS, and animals showed significantly higher survival rates and less symptoms compared with the albumin group (A-0-0). Analysis of histological results and fast reacting plasma parameters confirmed the preventive properties of A-AOC.


Subject(s)
Decompression Sickness/prevention & control , Fluorocarbons/administration & dosage , Nanocapsules , Oxygen/administration & dosage , Animals , Decompression Sickness/pathology , Disease Models, Animal , Liver/pathology , Male , Rats, Wistar , Serum Albumin , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...