Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(12): 18750-18764, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349489

ABSTRACT

Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.


Subject(s)
Bioelectric Energy Sources , Cycas , Metals, Heavy , Bioelectric Energy Sources/microbiology , Wastewater , Cycas/metabolism , Metals, Heavy/metabolism , Bacteria/metabolism , Electrodes , Electricity
2.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138485

ABSTRACT

In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.


Subject(s)
Cyclic GMP , Second Messenger Systems , Second Messenger Systems/physiology , Signal Transduction/physiology , Bacteria , Cyclic AMP , Nucleotides, Cyclic , Bacterial Proteins
3.
Arch Microbiol ; 204(10): 632, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36121562

ABSTRACT

In this study, bacteria from a microbial fuel cell (MFC) and isolates were evaluated on their Fe3+ reduction capability at different concentrations of iron using acetate as the sole source of carbon. The results demonstrated that the planktonic cells can reach an iron reduction up to 60% at 27 mmol Fe3+. Azospira oryzae (µ 0.89 ± 0.27 d-1) and Cupriavidus metallidurans CH34 (µ 2.34 ± 0.81 d-1) presented 55 and 62% of Fe3+ reduction, respectively, at 16 mmol l-1. Enterobacter bugandensis (µ 0.4 ± 0.01 d-1) 40% Fe3+ at 27 mmol l-1, Citrobacter freundii ATCC 8090 (µ 0.23 ± 0.05 d-1) and Citrobacter murliniae CDC2970-59 (µ 0.34 ± 0.02 d-1) reduced Fe3+ in ~ 50%, at 55 mmol l-1. This is the first report on these bacteria on a percentage of iron reduction. These results may be useful for anode design to contribute to a higher energy generation in MFCs.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Biofilms , Carbon , Electricity , Iron , Plankton , Sewage
4.
Arch Microbiol ; 204(5): 274, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449342

ABSTRACT

The Staphylococcus aureus SdrG protein is glycosylated by SdgA and SdgB for protection against its degradation by the neutrophil cathepsin G. So far, there is no information about the role of Staphylococcus epidermidis SdgA or SdgB in biofilm-forming; therefore, the focus of this work was to determine the distribution and expression of the sdrG, sdgA and sdgB genes in S. epidermidis under in vitro and in vivo biofilm conditions. The frequencies of the sdrG, sdgA and sdgB genes were evaluated by PCR in a collection of 75 isolates. Isolates were grown in dynamic (non-biofilm-forming) or static (biofilm-forming) conditions. The expression of sdrG, sdgA and sdgB was determined by RT-qPCR in cells grown under dynamic conditions (CGDC), as well as in planktonic and sessile cells from a biofilm and cells adhered to a catheter implanted in Balb/c mice. The sdrG and sdgB genes were detected in 100% of isolates, while the sdgA gene was detected in 71% of the sample (p < 0.001). CGDC did not express sdrG, sdgA and sdgB mRNAs. Planktonic and sessile cells expressed sdrG and sdgB, and the same was observed in cells adhered to the catheter. In particular, one isolate, capable of inducing a biofilm under treatment with cathepsin G, expressed sdrG and sdgB in planktonic and sessile cells and cells adhering to the catheter. This suggests that bacteria require biofilm conditions as an important factor for the transcription of the sdgA, sdgB and sdrG genes.


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cathepsin G , Glycosyltransferases/genetics , Mice , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism
5.
Environ Sci Pollut Res Int ; 29(22): 32913-32928, 2022 May.
Article in English | MEDLINE | ID: mdl-35020140

ABSTRACT

The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed.


Subject(s)
Bioelectric Energy Sources , Sapindaceae , Electricity , Electrodes , Fruit , Wastewater
6.
World J Microbiol Biotechnol ; 37(6): 104, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34037857

ABSTRACT

An iron reducing enrichment was obtained from sulfate reducing sludge and was evaluated on the capability of reducing Fe3+ coupled to acetate oxidation in a microbial fuel cell (MFC). Three molar ratios for acetate/Fe3+ were evaluated (2/16, 3.4/27 and 6.9/55 mM). The percentages of Fe3+ reduction were in a range of 80-90, 60-70 and 40-50% for the MFCs at closed circuit for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Acetate consumption was in a range of 80-90% in all cases. The results obtained at closed circuit for current density were: 11.37 mA/m2, 4.5 mA/m2 and 7.37 mA/m2 for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Some microorganisms that were isolated and identified in the MFCs were Azospira oryzae, Cupriavidus metallidurans CH34, Enterobacter bugandensis 247BMC, Citrobacter freundii ATCC8090 and Citrobacter murliniae CDC2970-59, these bacteria have been reported as exoelectrogens in MFC and in MFC involving metals removal but not all of them have been reported to utilize acetate as preferred substrate. The results demonstrate that the isolates can utilize acetate as the sole source of carbon and suggest that Fe3+ reduction was carried out by a combination of different mechanisms (direct contact and redox mediators) utilized by the bacteria identified in the MFC. Storage of the energy generated from the 2/16 mM MFC system arranged in a series of three demonstrated that it is possible to utilize the energy to charge a battery.


Subject(s)
Bacteria/classification , Bioelectric Energy Sources/microbiology , Iron/chemistry , Sequence Analysis, RNA/methods , Acetates/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Oxidation-Reduction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sewage/microbiology
7.
J Environ Health Sci Eng ; 18(2): 1189-1205, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312634

ABSTRACT

PURPOSE: The aim of the present work was to assess the electrogenic activity of bacteria from hydrothermal vent sediments achieved under sulfate reducing (SR) conditions in a microbial fuel cell design with acetate, propionate and butyrate as electron donors. METHODS: Two different mixtures of volatile fatty acids (VFA) were evaluated as the carbon source at two chemical oxygen demand (COD) proportions. The mixtures of VFA used were: acetate, propionate and butyrate COD: 3:0.5:0.5 (stage 1) and acetate - butyrate COD: 3.5:0.5 (stage 2). Periodical analysis of sulfate (SO4 -2), sulfide (HS-) and COD were conducted to assess sulfate reduction (SR) and COD removal along with measurements of voltage and current to assess the global performance of the consortium in the system. RESULTS: Percentage of SR was of 97.5 ± 0.7 and 74.3 ± 1.5% for stage 1 and 2, respectively. The % COD removal was of 91 ± 2.1 and 75.3 ± 9.6 for stage 1 and 2, respectively. Although SR and COD removal were higher at stage 1, in regards of energy, stage 2 presented higher current and power densities and Coulombic efficiency as follows: 741.7 ± 30.5 µA/m2, 376 ± 34.4 µW/m2 and 5 ± 2.7%, whereas for stage 1 these values were: 419 ± 71 µA/m2, 52.7 ± 18 µW/m2 and 0.02%, respectively. A metagenomic analysis - stage 2 - in the anodic chamber, demonstrated that SR was due to Dethiosulfovibrionaceae (HA73), Desulfobacter and Desulfococcus and the electrogenic microorganisms were Planococcus, SHD-231, Proteiniclasticum, vadinCA02, and families Porphyromonadacea and Pseudomonadaceae. CONCLUSIONS: It was demonstrated that microorganisms prevenient from hydrothermal vent sediments adapted to a microbial fuel cell system are able to generate electricity coupled to 74.3 ± 1.5 and 75.3 ± 9.6% of SR and COD removal respectively, with a mixture of acetate - butyrate.

8.
Mol Biol Rep ; 47(8): 6165-6177, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32749633

ABSTRACT

A paramour factor limiting metal-microorganism interaction is the metal ion concentration, and the metal precipitation efficiency driven by microorganisms is sensitive to metal ion concentration. The aim of the work was to determine the tolerance of the sulfidogenic sludge generated from hydrothermal vent sediments at microcosms level to different concentrations of Fe, Cu and Zn and the effect on the microbial community. In this study the chemical oxygen demand (COD) removal, sulfate-reducing activity (SRA) determination, inhibition effect through the determination of IC50, and the characterization of the bacterial community´s diversity were conducted. The IC50 on SRA was 34 and 81 mg/L for Zn and Cu, respectively. The highest sulfide concentration (H2S mg/L) and % of sulfate reduction obtained were: 511.30 ± 0.75 and 35.34 ± 0.51 for 50 mg/L of Fe, 482.48 ± 6.40 and 33.35 ± 0.44 for 10 mg/L of Cu, 442.26 ± 17.1 and 30.57 ± 1.18 for 10 mg/L of Zn, respectively. The COD removal rates were of 71.81 ± 7.6, 53.92 ± 1.07 and 57.68 ± 10.2 mg COD/ L d for Fe (50 mg/L), Cu (40 mg/L) and Zn (20 mg/L), respectively. Proteobacteria, Firmicutes, Chloroflexi and Actinobacteria were common phyla to four microcosms (stabilized sulfidogenic and added with Fe, Cu or Zn). The dsrA genes of Desulfotomaculum acetoxidans, Desulfotomaculum gibsoniae and Desulfovibrio desulfuricans were expressed in the microcosms supporting the SRA results. The consortia could be explored for ex-situ bioremediation purposes in the presence of the metals tested in this work.


Subject(s)
Copper/metabolism , Desulfovibrio desulfuricans/metabolism , Iron/metabolism , Peptococcaceae/metabolism , Zinc/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Biological Oxygen Demand Analysis , Desulfovibrio desulfuricans/isolation & purification , Geologic Sediments/microbiology , Hydrothermal Vents/microbiology , Peptococcaceae/isolation & purification , Sewage/microbiology
9.
J Sci Food Agric ; 100(10): 4049-4056, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32338377

ABSTRACT

BACKGROUND: Avocado is affected by Colletotrichum gloeosporioides causing anthracnose. Antagonistic microorganisms against C. gloeosporioides represent an alternative for biological control. Accordingly, in the present study, we focused on the isolation and characterization of potential antagonist bacteria against a member of the C. gloeosporioides species complex with respect to their possible future application. RESULTS: Samples of avocado rhizospheric soil were aquired from an orchard located in Ocuituco, Morelos, Mexico, aiming to obtain bacterial isolates with potential antifungal activity. From the soil samples, 136 bacteria were isolated and they were then challenged against a member of the C. gloeosporioides species complex; only three bacterial isolates A1, A2 and A3 significantly diminished mycelial fungal growth by 75%, 70% and 60%, respectively. Two of these isolates were identified by 16S rRNA as Bacillus mycoides (A1 and A2) and the third was identified as Bacillus tequilensis (A3). Bacillus mycoides bacterial cell-free supernatant reduced the mycelial growth of a member of the C. gloeosporioides species complex isolated from avocado by 65%, whereas Bacillus tequilensis A3 supernatant did so by 25% after 3 days post inoculation. Bacillus tequilensis mycoides A1 was a producer of proteases, indolacetic acid and siderophores. Preventive treatment using a cell-free supernatant of B. mycoides A1 diminished the severity of anthracnose disease (41.9%) on avocado fruit. CONCLUSION: These results reveal the possibility of using B. mycoides A1 as a potential biological control agent. © 2020 Society of Chemical Industry.


Subject(s)
Antibiosis , Bacillus/physiology , Colletotrichum/growth & development , Persea/microbiology , Plant Diseases/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Colletotrichum/physiology , Mexico , Mycelium/growth & development , Persea/growth & development , Siderophores/metabolism , Soil Microbiology
10.
Infect Dis (Lond) ; 51(6): 435-445, 2019 06.
Article in English | MEDLINE | ID: mdl-31010363

ABSTRACT

OBJECTIVES: Staphylococcus epidermidis can cause prosthetic joint infections. Strategies to differentiate between healthy skin and prosthetic joint infections isolates are relatively ineffective, which makes necessary to search for new differential biomarkers. Staphylococcus epidermidis has eleven surface proteins, denoted as Ses proteins. In this work, ses genes are used as biomarkers to differentiate between prosthetic joint infections and healthy skin isolates. METHODS: All prosthetic joint infections (n = 51) and healthy skin (n = 51) isolates were genotyped by pulsed-field gel electrophoresis. icaA, embp, sesA-I, and sdrF genes were determined by PCR. The phenotypic data included biofilm production and antibiotic resistance. RESULTS: 10 pulsed-field gel electrophoresis profiles were identified: four profiles were exclusive of prosthetic joint infections isolates, three profiles presented a higher proportion in prosthetic joint infections isolates and three profiles presented a higher proportion in healthy skin isolates. sesA, sesB, sesC, sesD, sesE, sesG, and sesH genes were more prevalent in healthy skin isolates than in prosthetic joint infections isolates (p < .05). Prosthetic joint infections isolates were more resistant to oxacillin (78%), ciprofloxacin (60%), levofloxacin (60%), and moxifloxacin (57%). The principal coordinate analysis and a discriminant analysis found that prosthetic joint infections isolates had as discriminant biomarker the biofilm formation, the icaA gene, oxacillin, ciprofloxacin, levofloxacin, moxifloxacin, and gentamicin resistance. In contrast, the healthy skin isolates had as discriminant biomarkers the embp, sesA, sesB, sesC, sesD, sesE, sesG, and sesH genes. CONCLUSIONS: These data suggest that ses genes can be considered biomarkers to differentiate between S. epidermidis commensal and prosthetic joint infections clinical.


Subject(s)
Genes, Bacterial , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Symbiosis , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Arthritis, Infectious/microbiology , Biofilms/growth & development , Biomarkers/analysis , Female , Genetic Markers , Genotype , Humans , Male , Middle Aged , Skin/microbiology , Staphylococcus epidermidis/pathogenicity , Young Adult
11.
Article in English | MEDLINE | ID: mdl-30676262

ABSTRACT

Trichloroethylene (TCE) is known as a toxic organic compound found as a pollutant in water streams around the world. The ultimate goal of the present work was to determine the TCE concentration that would be feasible to biodegrade on a long-term basis by a sulfidogenic sludge while maintaining sulfate reducing activity (SRA). Microcosms were prepared with sulfidogenic sludge obtained from a stabilized sulfidogenic UASB and amended with different TCE concentrations (100-300 µM) and two different proportions of volatile fatty acids (VFA) acetate, propionate and butyrate at COD of 2.5:1:1 and 1:1:1, respectively to evaluate the tolerance of the sludge. The overall results suggested that the continuous exposure of the microorganisms to TCE leads to inhibition of SRA; nonetheless, the SRA can be recovered after adequate supplementation of carbon sources and sulfate. The most suitable TCE concentration to operate on a long-term basis while preserving SRA was 26-35 mg L-1 (200-260 µM). A low level of expression of the mRNA of the sulfite reductase subunit alpha (dsrA) gene was obtained in the presence of the TCE and its intermediate products. This gene was associated to SRB belonging to the genera Desulfovibrio, Desulfosalsimonas, Desulfotomaculum, Desulfococcus, Desulfatiglans and Desulfomonas.


Subject(s)
Bioreactors/microbiology , Sewage , Sulfur-Reducing Bacteria/drug effects , Trichloroethylene/toxicity , Water Pollutants, Chemical/toxicity , Adaptation, Physiological , Biodegradation, Environmental , Fatty Acids, Volatile/metabolism , Feasibility Studies , Genes, Bacterial , Sewage/chemistry , Sewage/microbiology , Sulfates/metabolism , Sulfur-Reducing Bacteria/genetics , Time Factors , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis
12.
Bioresour Technol ; 244(Pt 1): 400-406, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28783567

ABSTRACT

The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively.


Subject(s)
Biomass , Chlorella vulgaris , Wastewater , Chlorella , Fatty Acids , Microalgae
13.
Appl Biochem Biotechnol ; 182(2): 452-467, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27878745

ABSTRACT

Marine microorganisms that are obtained from hydrothermal vent sediments present a great metabolic potential for applications in environmental biotechnology. However, the work done regarding their applications in engineered systems is still scarce. Hence, in this work, the sulfate reduction process carried out by a marine microbial community in an upflow anaerobic sludge blanket (UASB) reactor was investigated for 190 days under sequential batch mode. The effects of 1000 to 5500 mg L-1 of SO4-2 and the chemical oxygen demand (COD)/SO4-2 ratio were studied along with a kinetic characterization with lactate as the electron donor. Also, the feasibility of using the sulfide produced in the UASB for copper precipitation in a second column was studied under continuous mode. The system presented here is an alternative to sulfidogenesis, particularly when it is necessary to avoid toxicity to sulfide and competition with methanogens. The bioreactor performed better with relatively low concentrations of sulfate (up to 1100 mg L-1) and COD/SO4-2 ratios between 1.4 and 3.6. Under the continuous regime, the biogenic sulfide was sufficient to precipitate copper at a removal rate of 234 mg L-1 day-1. Finally, the identification of the microorganisms in the sludge was carried out; some genera of microorganisms identified were Desulfitobacterium and Clostridium.


Subject(s)
Bioreactors , Clostridium/growth & development , Copper Sulfate/metabolism , Desulfitobacterium/growth & development , Microbial Consortia/physiology , Anaerobiosis/physiology , Oxidation-Reduction
14.
J Vis Exp ; (105): e52956, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26555802

ABSTRACT

The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.


Subject(s)
Bioreactors/microbiology , Sewage/chemistry , Sewage/microbiology , Sulfates/chemistry , Trichloroethylene/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Bacteria/metabolism , Biotechnology , Geologic Sediments/chemistry , Sulfates/metabolism , Trichloroethylene/metabolism
15.
Appl Biochem Biotechnol ; 174(8): 2919-40, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25234397

ABSTRACT

Sulfidogenesis in reactors is mostly achieved through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. In this work, an upflow anaerobic sludge blanket (UASB) reactor operated under sulfate-reducing conditions was inoculated with hydrothermal vent sediments to carry out sulfate reduction using volatile fatty acids (VFAs) as substrate and chemical oxygen demand (COD)/SO4 (-2) ratios between 0.49 and 0.64. After a short period of adaptation, a robust non-granular sludge was capable of achieving high sulfate reduction efficiencies while avoiding competence with methanogens and toxicity to the microorganisms due to high sulfide concentration. The highest sulfide concentration (2,552 mg/L) was obtained with acetate/butyrate, and sulfate reduction efficiencies were up to 98 %. A mixture of acetate/butyrate, which produced a higher yielding of HS(-), was preferred over acetate/propionate/butyrate since the consumption of COD was minimized during the process. Sludge was analyzed, and some of the microorganisms identified in the sludge belong to the genera Desulfobacterium, Marinobacter, and Clostridium. The tolerance of the sludge to sulfide may be attributed to the syntrophy among these microorganisms, some of which have been reported to tolerate high concentrations of sulfide. To the best of our knowledge, this is the first report on the analysis of the direct utilization of hydrothermal vent sediments as an alternate source of sludge for sulfate reduction under high sulfide concentrations.


Subject(s)
Clostridium/growth & development , Hydrothermal Vents/microbiology , Marinobacter/growth & development , Sewage/microbiology , Sulfates/metabolism , Sulfides/metabolism , Acetates/metabolism , Butyrates/metabolism , Clostridium/metabolism , Oxidation-Reduction , Propionates/metabolism
16.
Biodegradation ; 17(4): 317-29, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16491307

ABSTRACT

Relatively low concentrations of Vitamin B(12) are known to accelerate the anaerobic biotransformation of carbon tetrachloride (CT) and chloroform (CF). However, the addition of vitamin B(12) for field-scale bioremediation is expected to be costly. The present study considered a strategy to generate vitamin B(12) by addition of biosynthetic precursors. One of the precursors, porphobilinogen (PB) involved in the formation of the corrin ring, significantly increased the CT biotransformation rates by 2.7-, 8.8- and 10.9-fold when supplemented at 160, 500 and 900 microM, respectively. A positive control with 10 microM of vitamin B(12) resulted in a 5.9-fold increase in the CT-bioconversion rate. PB additions provided high molar yields of inorganic chloride (57% of CT organochlorine), comparable to that obtained with vitamin B(12) supplemented cultures. The primary substrate, methanol, known to induce vitamin B(12) production in methanogens and acetogens, was required for PB to have a significant impact on CT conversion. The observation suggests that PB's role was due to stimulating vitamin B(12) biosynthesis. The present study therefore provides insights on how to achieve vitamin B(12) enhanced rates of CT bioremediation through the use of less complex compounds that are precursors of vitamin B(12). Although PB is a costly chemical, its large impact points to corrin ring formation as the rate-limiting step.


Subject(s)
Bacteria, Anaerobic/metabolism , Carbon Tetrachloride/chemistry , Vitamin B 12/biosynthesis , Vitamin B 12/chemistry , Biodegradation, Environmental , Biotransformation , Carbon Tetrachloride/metabolism , Oxygen/chemistry , Porphobilinogen/chemistry , Time Factors
17.
Biodegradation ; 16(3): 215-28, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15865146

ABSTRACT

Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 microM) metabolism in a methanogenic sludge consortium (0.5 g VSS l(-1)) supplied with volatile fatty acids as electron donor (0.2 g COD l(-1)). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 microM, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin: CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin: CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.


Subject(s)
Carbon Tetrachloride/metabolism , Sewage/microbiology , Anaerobiosis , Anthraquinones/metabolism , Anthraquinones/pharmacology , Biodegradation, Environmental/drug effects , Biotransformation/drug effects , Hydroxocobalamin/metabolism , Hydroxocobalamin/pharmacology , Kinetics , Oxidation-Reduction , Riboflavin/metabolism , Riboflavin/pharmacology , Vitamin B 12/metabolism , Vitamin B 12/pharmacology , Water Pollutants, Chemical/metabolism
18.
Biotechnol Bioeng ; 89(5): 539-50, 2005 Mar 05.
Article in English | MEDLINE | ID: mdl-15669086

ABSTRACT

Chloroform (CF) is an important priority pollutant contaminating groundwater. Reductive dechlorination by anaerobic microorganisms is a promising strategy towards the remediation of CF. The objective of this study was to evaluate the use of redox active vitamins as electron shuttles to enhance the anaerobic biodegradation of CF in an unadapted methanogenic consortium not previously exposed to chlorinated compounds. Only negligible degradation of CF was observed in control cultures lacking redox active vitamins. The addition of riboflavin (RF), cyanocobalamin (CNB12), and hydroxycobalamin (HOB12) enabled biodegradation of CF. The reactions were predominantly catalyzed biologically as evidenced by the lack of any CF conversion in heat-killed controls amended with the cobalamins or minor conversion with RF. In live cultures, significant increases in the rate of CF conversion was observed at substoichiometric molar ratios as low as 0.1 to 0.01 vitamin:CF for RF and CNB12, respectively. At the highest molar vitamin:CF ratios tested of 0.2, the first-order rate constant of CF degradation was 5.3- and 91-fold higher in RF and CNB12 amended cultures, respectively, compared to the unamended control culture. The distribution of biotransformation products was highly impacted by the type of redox active vitamin utilized. Cultures supplemented with RF provided high yields of dichloromethane (DCM). On the other hand, cobalamins promoted the near complete mineralization of organochlorine in CF to inorganic chloride and lowered the yield of DCM. In cultures where no or little CF bioconversion occurred, prolonged exposure to CF resulted in cell lysis, as evidenced by the release of intracellular chloride. The results taken as a whole suggest that the anaerobic bioremediation of CF-contaminated sites can greatly be improved with strategies aimed at increasing the concentration of redox active vitamins.


Subject(s)
Chloroform/metabolism , Euryarchaeota/metabolism , Methane/metabolism , Riboflavin/metabolism , Vitamin B 12/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
19.
Appl Environ Microbiol ; 70(1): 114-20, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711632

ABSTRACT

Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications.


Subject(s)
Flavobacterium/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Alkanes , Biodegradation, Environmental , Emulsifying Agents , Flavobacterium/growth & development , Lipoproteins/chemistry , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Micelles , Solubility , Surface Tension , Surface-Active Agents/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...