Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
medRxiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562757

ABSTRACT

In genetic disease, an accurate expression landscape of disease genes and faithful animal models will enable precise genetic diagnoses and therapeutic discoveries, respectively. We previously discovered that variants in NOS1AP , encoding nitric oxide synthase 1 (NOS1) adaptor protein, cause monogenic nephrotic syndrome (NS). Here, we determined that an intergenic splice product of N OS1AP / Nos1ap and neighboring C1orf226/Gm7694 , which precludes NOS1 binding, is the predominant isoform in mammalian kidney transcriptional and proteomic data. Gm7694 -/- mice, whose allele exclusively disrupts the intergenic product, developed NS phenotypes. In two human NS subjects, we identified causative NOS1AP splice variants, including one predicted to abrogate intergenic splicing but initially misclassified as benign based on the canonical transcript. Finally, by modifying genetic background, we generated a faithful mouse model of NOS1AP -associated NS, which responded to anti-proteinuric treatment. This study highlights the importance of intergenic splicing and a potential treatment avenue in a mendelian disorder.

2.
EMBO J ; 41(17): e110784, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35859387

ABSTRACT

The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.


Subject(s)
Apoptosis Inducing Factor , Electron Transport Complex I , Mitochondrial Membrane Transport Proteins , Apoptosis Inducing Factor/metabolism , Disulfides/metabolism , Electron Transport Complex I/metabolism , HEK293 Cells , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Protein Transport
3.
Brain ; 145(7): 2602-2616, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35104841

ABSTRACT

Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Nervous System Malformations , Amino Acid Metabolism, Inborn Errors/genetics , Brain , Humans , Metabolism, Inborn Errors/genetics
4.
EMBO J ; 40(21): e108648, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34542926

ABSTRACT

So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.


Subject(s)
Adaptation, Physiological , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Multiprotein Complexes/genetics , Adenosine Triphosphate/metabolism , Cell Line, Tumor , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Gene Expression , Humans , Mitochondria/pathology , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/deficiency , Multiprotein Complexes/deficiency , Osteoblasts/metabolism , Osteoblasts/pathology , Oxidative Phosphorylation
6.
Genet Med ; 23(9): 1705-1714, 2021 09.
Article in English | MEDLINE | ID: mdl-34140661

ABSTRACT

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Subject(s)
Brain Diseases , Epilepsy , Intellectual Disability , Metabolism, Inborn Errors , Neutropenia , Adaptor Proteins, Signal Transducing , Humans , Intellectual Disability/genetics , Neutropenia/genetics
7.
Biochim Biophys Acta Bioenerg ; 1862(9): 148448, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34015258

ABSTRACT

Complexome profiling is a rapidly spreading, powerful technique to gain insight into the nature of protein complexes. It identifies and quantifies protein complexes separated into multiple fractions of increasing molecular mass using mass spectrometry-based, label-free bottom-up proteomics. Complexome profiling enables a sophisticated and thorough characterization of the composition, molecular mass, assembly, and interactions of protein complexes. However, in practice, its application is limited by the large number of samples it generates and the related time of mass spectrometry analyses. Here, we report an improved process workflow that implements tandem mass tags for multiplexing complexome profiling. This workflow substantially reduces the number of samples and measuring time without compromising protein identification or quantification reliability. In profiles from mitochondrial fractions of cells recovering from chloramphenicol treatment, tandem mass tags-multiplexed complexome profiling exhibited migration patterns of mature ATP synthase (complex V) and assembly intermediates that were consistent in composition and abundance with profiles obtained by the label-free approach. Reporter ion quantifications of proteins and complexes unaffected by the chloramphenicol treatment presented less variation in comparison to the label-free method. Incorporation of tandem mass tags enabled an efficient and robust complexome profiling analysis and may foster broader application for protein complex profiling in biomedical research and diagnostics.


Subject(s)
Chloramphenicol/chemistry , Mitochondrial Proton-Translocating ATPases/chemistry , Proteomics/methods , Tandem Mass Spectrometry/methods , Cell Line , Chromatography, High Pressure Liquid , Humans , Peptides/chemistry , Reproducibility of Results , Staining and Labeling , Time Factors
8.
Biochim Biophys Acta Bioenerg ; 1862(7): 148411, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33722514

ABSTRACT

Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.


Subject(s)
Databases, Factual , Multiprotein Complexes/metabolism , Proteins/metabolism , Proteome/metabolism , Software , Humans , Proteome/analysis
9.
Front Cell Dev Biol ; 9: 796128, 2021.
Article in English | MEDLINE | ID: mdl-35096826

ABSTRACT

Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.

10.
Microbiol Res ; 243: 126649, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33285428

ABSTRACT

The unicellular, free-living, nonphotosynthetic chlorophycean alga Polytomella parva, closely related to Chlamydomonas reinhardtii and Volvox carteri, contains colorless, starch-storing plastids. The P. parva plastids lack all light-dependent processes but maintain crucial metabolic pathways. The colorless alga also lacks a plastid genome, meaning no transcription or translation should occur inside the organelle. Here, using an algal fraction enriched in plastids as well as publicly available transcriptome data, we provide a morphological and proteomic characterization of the P. parva plastid, ultimately identifying several plastid proteins, both by mass spectrometry and bioinformatic analyses. Data are available via ProteomeXchange with identifier PXD022051. Altogether these results led us to propose a plastid proteome for P. parva, i.e., a set of proteins that participate in carbohydrate metabolism; in the synthesis and degradation of starch, amino acids and lipids; in the biosynthesis of terpenoids and tetrapyrroles; in solute transport and protein translocation; and in redox homeostasis. This is the first detailed plastid proteome from a unicellular, free-living colorless alga.


Subject(s)
Chlorophyta/genetics , Chlorophyta/metabolism , Genome, Plastid , Proteome/genetics , Amino Acids/metabolism , Chlorophyta/chemistry , Mass Spectrometry , Plastids/chemistry , Plastids/genetics , Plastids/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics
12.
J Inherit Metab Dis ; 43(6): 1382-1391, 2020 11.
Article in English | MEDLINE | ID: mdl-32418222

ABSTRACT

Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.


Subject(s)
Cutis Laxa/genetics , Minor Histocompatibility Antigens/genetics , Mutation, Missense , Phosphotransferases (Alcohol Group Acceptor)/genetics , Skin/pathology , Amino Acid Sequence , Animals , Child , Cutis Laxa/pathology , Female , Glycosylation , Homozygote , Humans , Mice , Mice, Knockout , Pedigree , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/deficiency
13.
Nat Commun ; 11(1): 1643, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242014

ABSTRACT

Regulation of the turnover of complex I (CI), the largest mitochondrial respiratory chain complex, remains enigmatic despite huge advancement in understanding its structure and the assembly. Here, we report that the NADH-oxidizing N-module of CI is turned over at a higher rate and largely independently of the rest of the complex by mitochondrial matrix protease ClpXP, which selectively removes and degrades damaged subunits. The observed mechanism seems to be a safeguard against the accumulation of dysfunctional CI arising from the inactivation of the N-module subunits due to attrition caused by its constant activity under physiological conditions. This CI salvage pathway maintains highly functional CI through a favorable mechanism that demands much lower energetic cost than de novo synthesis and reassembly of the entire CI. Our results also identify ClpXP activity as an unforeseen target for therapeutic interventions in the large group of mitochondrial diseases characterized by the CI instability.


Subject(s)
Electron Transport Complex I/metabolism , Animals , Electron Transport Complex I/genetics , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Myoblasts/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism
14.
Biochim Biophys Acta Bioenerg ; 1861(8): 148202, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32275929

ABSTRACT

Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.


Subject(s)
Electron Transport Complex I/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Biotinylation , Evolution, Molecular , Gene Knockout Techniques , HEK293 Cells , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , Protein Binding
15.
Biochim Biophys Acta Bioenerg ; 1860(9): 734-744, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31376363

ABSTRACT

The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) has increased drastically during the last century. Methylomirabilis bacteria can play an important role in controlling the emission of these two gases from natural ecosystems, by oxidizing methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for methane activation. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell can then be used to activate methane by a particulate methane monooxygenase. So far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics and physiological experiments. Here we applied a complexome profiling approach to determine which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To validate the proposed metabolic model, we focused on enzymes involved in respiration, as well as nitrogen and carbon transformation. All complexes suggested to be involved in nitrite-dependent methane oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, several complexes involved in nitrate reduction/nitrite oxidation and NO reduction were detected, which likely play a role in detoxification and redox homeostasis. In conclusion, complexome profiling validated the expression and composition of enzymes hypothesized to be involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further corroborating their unique metabolism involved in the environmentally relevant process of nitrite-dependent methane oxidation.


Subject(s)
Bacteria, Anaerobic/enzymology , Bacterial Proteins/metabolism , Methane/chemistry , Multienzyme Complexes/metabolism , Nitrates/chemistry , Nitric Oxide/chemistry , Methane/metabolism , Nitrates/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Oxygenases/metabolism
16.
Bioinformatics ; 35(17): 3083-3091, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30649188

ABSTRACT

MOTIVATION: Complexome profiling combines native gel electrophoresis with mass spectrometry to obtain the inventory, composition and abundance of multiprotein assemblies in an organelle. Applying complexome profiling to determine the effect of a mutation on protein complexes requires separating technical and biological variations from the variations caused by that mutation. RESULTS: We have developed the COmplexome Profiling ALignment (COPAL) tool that aligns multiple complexome profiles with each other. It includes the abundance profiles of all proteins on two gels, using a multi-dimensional implementation of the dynamic time warping algorithm to align the gels. Subsequent progressive alignment allows us to align multiple profiles with each other. We tested COPAL on complexome profiles from control mitochondria and from Barth syndrome (BTHS) mitochondria, which have a mutation in tafazzin gene that is involved in remodeling the inner mitochondrial membrane phospholipid cardiolipin. By comparing the variation between BTHS mitochondria and controls with the variation among either, we assessed the effects of BTHS on the abundance profiles of individual proteins. Combining those profiles with gene set enrichment analysis allows detecting significantly affected protein complexes. Most of the significantly affected protein complexes are located in the inner mitochondrial membrane (mitochondrial contact site and cristae organizing system, prohibitins), or are attached to it (the large ribosomal subunit). AVAILABILITY AND IMPLEMENTATION: COPAL is written in python and is available from http://github.com/cmbi/copal. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Barth Syndrome , Humans , Mass Spectrometry , Mitochondria , Mitochondrial Proteins , Mutation
17.
J Cereb Blood Flow Metab ; 39(9): 1790-1802, 2019 09.
Article in English | MEDLINE | ID: mdl-29629602

ABSTRACT

Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.


Subject(s)
Electron Transport Complex I/metabolism , Hypoxia-Ischemia, Brain/metabolism , Mitochondria/metabolism , Animals , Animals, Newborn , Brain/metabolism , Brain/pathology , Cells, Cultured , Electron Transport , Female , Humans , Hydrogen Peroxide/metabolism , Hypoxia-Ischemia, Brain/pathology , Male , Mitochondria/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism
18.
Nat Commun ; 9(1): 4500, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374105

ABSTRACT

Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier.


Subject(s)
Electron Transport Complex I/chemistry , Electron Transport Complex I/ultrastructure , Proton Pumps/chemistry , Ubiquinone/chemistry , Ubiquinone/ultrastructure , Crystallography, X-Ray , Disulfides , Electron Transport , Electron Transport Complex I/genetics , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Kinetics , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation , Proton Pumps/ultrastructure , Reactive Oxygen Species/metabolism , Yarrowia/genetics , Yarrowia/metabolism
19.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3650-3658, 2018 11.
Article in English | MEDLINE | ID: mdl-30251684

ABSTRACT

Barth syndrome (BTHS) is a rare X-linked disorder that is characterized by cardiac and skeletal myopathy, neutropenia and growth abnormalities. The disease is caused by mutations in the tafazzin (TAZ) gene encoding an enzyme involved in the acyl chain remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, this leads to decreased levels of mature CL and accumulation of the intermediate monolysocardiolipin (MLCL). At a cellular level, this causes mitochondrial fragmentation and reduced stability of the respiratory chain supercomplexes. However, the exact mechanism through which tafazzin deficiency leads to disease development remains unclear. We therefore aimed to elucidate the pathways affected in BTHS cells by employing proteomic and metabolic profiling assays. Complexome profiling of patient skin fibroblasts revealed significant effects for about 200 different mitochondrial proteins. Prominently, we found a specific destabilization of higher order oxidative phosphorylation (OXPHOS) supercomplexes, as well as changes in complexes involved in cristae organization and CL trafficking. Moreover, the key metabolic complexes 2-oxoglutarate dehydrogenase (OGDH) and branched-chain ketoacid dehydrogenase (BCKD) were profoundly destabilized in BTHS patient samples. Surprisingly, metabolic flux distribution assays using stable isotope tracer-based metabolomics did not show reduced flux through the TCA cycle. Overall, insights from analyzing the impact of TAZ mutations on the mitochondrial complexome provided a better understanding of the resulting functional and structural consequences and thus the pathological mechanisms leading to Barth syndrome.


Subject(s)
Barth Syndrome/pathology , Metabolic Networks and Pathways/genetics , Mitochondrial Membranes/pathology , Signal Transduction/genetics , Transcription Factors/genetics , Acyltransferases , Barth Syndrome/genetics , Cardiolipins/metabolism , Case-Control Studies , Fibroblasts , Healthy Volunteers , Humans , Metabolomics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mutation , Oxidative Phosphorylation , Primary Cell Culture , Proteomics , Skin/cytology , Skin/pathology , Transcription Factors/metabolism
20.
Am J Hum Genet ; 102(4): 685-695, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576219

ABSTRACT

Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.


Subject(s)
Alleles , Hearing Loss, Sensorineural/genetics , Hypoglycemia/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Ribosomal Proteins/genetics , Amino Acid Sequence , Child, Preschool , DNA Mutational Analysis , DNA, Mitochondrial/genetics , Female , Fibroblasts/metabolism , Hearing Loss, Sensorineural/complications , Humans , Hypoglycemia/complications , Infant , Infant, Newborn , Male , Mitochondrial Diseases/complications , Mitochondrial Proteins/chemistry , Oxidative Phosphorylation , Protein Subunits/genetics , RNA, Ribosomal/genetics , Ribosomal Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...