Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 21(1): 139, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831865

ABSTRACT

BACKGROUND: Functionally related genes in bacteria are often organized and transcribed as polycistronic transcriptional units. Examples are the fim operon, which codes for biogenesis of type 1 fimbriae in Escherichia coli, and the atp operon, which codes for the FoF1 ATP synthase. We tested the hypothesis that markerless polar mutations could be efficiently engineered using CRISPR/Cas12a in these loci. RESULTS: Cas12a-mediated engineering of a terminator sequence inside the fimA gene occurred with efficiencies between 10 and 80% and depended on the terminator's sequence, whilst other types of mutations, such as a 97 bp deletion, occurred with 100% efficiency. Polar mutations using a terminator sequence were also engineered in the atp locus, which induced its transcriptional shutdown and produced identical phenotypes as a deletion of the whole atp locus (ΔatpIBEFHAGDC). Measuring the expression levels in the fim and atp loci showed that many supposedly non-polar mutants induced a significant polar effect on downstream genes. Finally, we also showed that transcriptional shutdown or deletion of the atp locus induces elevated levels of intracellular ATP during the exponential growth phase. CONCLUSIONS: We conclude that Cas12a-mediated mutagenesis is an efficient simple system to generate polar mutants in E. coli. Different mutations were induced with varying degrees of efficiency, and we confirmed that all these mutations abolished the functions encoded in the fim and atp loci. We also conclude that it is difficult to predict which mutagenesis strategy will induce a polar effect in genes downstream of the mutation site. Furthermore the strategies described here can be used to manipulate the metabolism of E. coli as showcased by the increase in intracellular ATP in the markerless ΔatpIBEFHAGDC mutant.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Adenosine Triphosphate , Escherichia coli/genetics , Gene Editing , Mutagenesis , Operon
2.
Front Microbiol ; 9: 846, 2018.
Article in English | MEDLINE | ID: mdl-29760688

ABSTRACT

Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.

SELECTION OF CITATIONS
SEARCH DETAIL