Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Br J Pharmacol ; 181(22): 4546-4570, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39081110

ABSTRACT

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Cell Proliferation , Colonic Neoplasms , Gossypol , Humans , Gossypol/pharmacology , Gossypol/analogs & derivatives , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Calcium Channel Blockers/pharmacology , Cell Proliferation/drug effects , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , G1 Phase Cell Cycle Checkpoints/drug effects , Calcium/metabolism , Cell Line, Tumor , Resting Phase, Cell Cycle/drug effects , Antineoplastic Agents/pharmacology
2.
Cell Calcium ; 109: 102688, 2023 01.
Article in English | MEDLINE | ID: mdl-36538845

ABSTRACT

Contact sites between the endoplasmic reticulum (ER) and mitochondria play a pivotal role in cell signaling, and the interaction between these organelles is dynamic and finely regulated. We have studied the role of ER Ca2+ concentration ([Ca2+]ER) in modulating this association in HeLa and HEK293 cells and human fibroblasts. According to Manders' coefficient, ER-mitochondria colocalization varied depending on the ER marker; it was the highest with ER-Tracker and the lowest with ER Ca2+ indicators (Mag-Fluo-4, erGAP3, and G-CEPIA1er) in both HeLa cells and human fibroblasts. Only GEM-CEPIA1er displayed a high colocalization with elongated mitochondria in HeLa cells, this ER Ca2+ indicator reveals low Ca2+ regions because this ion quenches its fluorescence. On the contrary, the typical rounded and fragmented mitochondria of HEK293 cells colocalized with Mag-Fluo-4 and, to a lesser extent, with GEM-CEPIA1er. The ablation of the three IP3R isoforms in HEK293 cells increased mitochondria-GEM-CEPIA1er colocalization. This pattern of colocalization was inversely correlated with the rate of ER Ca2+ leak evoked by thapsigargin (Tg). Moreover, Tg and Histamine in the absence of external Ca2+ increased mitochondria-ER colocalization. On the contrary, in the presence of external Ca2+, both Bafilomycin A1 and Tg reduced the mitochondria-ER interaction. Notably, knocking down MCU decreased mitochondria-ER colocalization. Overall, our data suggest that the [Ca2+] is not homogenous within the ER lumen and that mitochondria-ER interaction is modulated by the ER Ca2+ leak and the [Ca2+]i.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Humans , HeLa Cells , HEK293 Cells , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Thapsigargin/pharmacology , Calcium/metabolism , Calcium Signaling
3.
Front Physiol ; 13: 925023, 2022.
Article in English | MEDLINE | ID: mdl-35837019

ABSTRACT

PKC inhibitors stimulate Ca2+ release from internal stores in diverse cell types. Our data indicate that this action cannot be explained by an increased agonist-induced IP3 production or an overloaded SR Ca2+ pool in smooth muscle cells from guinea pig urinary bladder. The incubation of these cells with three different PKC inhibitors, such as Go6976, Go6983, and BIM 1, resulted in a higher SR Ca2+ leak revealed by inhibition of the SERCA pump with thapsigargin. This SR Ca2+ leakage was sensitive to protein translocation inhibitors such as emetine and anisomycin. Since this increased SR Ca2+ leak did not result in a depleted SR Ca2+ store, we have inferred there was a compensatory increase in SERCA pump activity, resulting in a higher steady-state. This new steady-state increased the frequency of Spontaneous Transient Outward Currents (STOCs), which reflect the activation of high conductance, Ca2+-sensitive potassium channels in response to RyR-mediated Ca2+ sparks. This increased STOC frequency triggered by PKC inhibition was restored to normal by inhibiting translocon-mediated Ca2+ leak with emetine. These results suggest a critical role of PKC-mediated translocon phosphorylation in regulating SR Ca2+ steady-state, which, in turn, alters SR Ca2+ releasing activity.

4.
Cells ; 11(13)2022 06 27.
Article in English | MEDLINE | ID: mdl-35805121

ABSTRACT

The overexpression of the Orai1 channel inhibits SOCE when using the Ca2+ readdition protocol. However, we found that HeLa cells overexpressing the Orai1 channel displayed enhanced Ca2+ entry and a limited ER depletion in response to the combination of ATP and thapsigargin (TG) in the presence of external Ca2+. As these effects require the combination of an agonist and TG, we decided to study whether the phosphorylation of Orai1 S27/S30 residues had any role using two different mutants: Orai1-S27/30A (O1-AA, phosphorylation-resistant) and Orai1-S27/30D (O1-DD, phosphomimetic). Both O1-wt and O1-AA supported enhanced Ca2+ entry, but this was not the case with O1-E106A (dead-pore mutant), O1-DD, and O1-AA-E106A, while O1-wt, O1-E106A, and O1-DD inhibited the ATP and TG-induced reduction of ER [Ca2+], suggesting that the phosphorylation of O1 S27/30 interferes with the IP3R activity. O1-wt and O1-DD displayed an increased interaction with IP3R in response to ATP and TG; however, the O1-AA channel decreased this interaction. The expression of mCherry-O1-AA increased the frequency of ATP-induced sinusoidal [Ca2+]i oscillations, while mCherry-O1-wt and mCherry-O1-DD decreased this frequency. These data suggest that the combination of ATP and TG stimulates Ca2+ entry, and the phosphorylation of Orai1 S27/30 residues by PKC reduces IP3R-mediated Ca2+ release.


Subject(s)
Calcium Channels , Calcium , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Calcium/metabolism , Calcium Channels/metabolism , HeLa Cells , Humans , ORAI1 Protein/metabolism , Phosphorylation , Protein Kinase C/metabolism , Thapsigargin/pharmacology
5.
Front Physiol ; 13: 834220, 2022.
Article in English | MEDLINE | ID: mdl-35360237

ABSTRACT

In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.

6.
Metabolites ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562475

ABSTRACT

Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has been associated with decreased basal metabolism in mice; however, the above has not yet been analyzed in humans. For this reason, in the present study, we examined the association between RGS2 expression and insulin resistance state. The incubation with palmitic acid (PA), which inhibits insulin-mediated Akt Ser473 phosphorylation, resulted in the increased RGS2 expression in human umbilical vein endothelial-CS (HUVEC-CS) cells. The RGS2 overexpression without PA was enough to inhibit insulin-mediated Akt Ser473 phosphorylation in HUVEC-CS cells. Remarkably, the platelet RGS2 expression levels were higher in type 2 diabetes mellitus (T2DM) patients than in healthy donors. Moreover, an unbiased principal component analysis (PCA) revealed that RGS2 expression level positively correlated with glycated hemoglobin (HbA1c) and negatively with age and high-density lipoprotein cholesterol (HDL) in T2DM patients. Furthermore, PCA showed that healthy subjects segregated from T2DM patients by having lower levels of HbA1c and RGS2. These results demonstrate that RGS2 overexpression leads to decreased insulin signaling in a human endothelial cell line and is associated with poorly controlled diabetes.

7.
Front Cell Dev Biol ; 8: 544, 2020.
Article in English | MEDLINE | ID: mdl-32714930

ABSTRACT

In this study we evaluated the effect of the reduction in the endoplasmic reticulum calcium concentration ([Ca2+]ER), changes in the cytoplasmic calcium concentration ([Ca2+]i), alteration of the mitochondrial membrane potential, and the ER stress in the activation of caspase-3 in neonatal cerebellar granule cells (CGN). The cells were loaded with Fura-2 to detect changes in the [Ca2+]i and with Mag-fluo-4 to measure variations in the [Ca2+]ER or with TMRE to follow modifications in the mitochondrial membrane potential in response to five different inducers of CGN cell death. These inducers were staurosporine, thapsigargin, tunicamycin, nifedipine and plasma membrane repolarization by switching culture medium from 25 mM KCl (K25) to 5 mM KCl (K5). Additionally, different markers of ER stress were determined and all these parameters were correlated with the activation of caspase-3. The different inducers of cell death in CGN resulted in three different levels of activation of caspase-3. The highest caspase-3 activity occurred in response to K5. At the same time, staurosporine, nifedipine, and tunicamycin elicited an intermediate activation of caspase-3. Importantly, thapsigargin did not activate caspase-3 at any time. Both K5 and nifedipine rapidly decreased the [Ca2+]i, but only K5 immediately reduced the [Ca2+]ER and the mitochondrial membrane potential. Staurosporine and tunicamycin increased the [Ca2+]i and they decreased both the [Ca2+]ER and mitochondrial membrane potential, but at a much lower rate than K5. Thapsigargin strongly increased the [Ca2+]i, but it took 10 min to observe any decrease in the mitochondrial membrane potential. Three cell death inducers -K5, staurosporine, and thapsigargin- elicited ER stress, but they took 30 min to have any effect. Thapsigargin, as expected, displayed the highest efficacy activating PERK. Moreover, a specific PERK inhibitor did not have any impact on cell death triggered by these cell death inducers. Our data suggest that voltage-gated Ca2+ channels, that are not dihydropyridine-sensitive, load the ER with Ca2+ and this Ca2+ flux plays a critical role in keeping the mitochondrial membrane potential polarized. A rapid decrease in the [Ca2+]ER resulted in rapid mitochondrial membrane depolarization and strong activation of caspase-3 without the intervention of the ER stress in CGN.

8.
Adv Exp Med Biol ; 1131: 337-370, 2020.
Article in English | MEDLINE | ID: mdl-31646517

ABSTRACT

The sarcoplasmic/endoplasmic reticulum (SR/ER) is the main intracellular calcium (Ca2+) pool in muscle and non-muscle eukaryotic cells, respectively. The reticulum accumulates Ca2+ against its electrochemical gradient by the action of sarco/endoplasmic reticulum calcium ATPases (SERCA pumps), and the capacity of this Ca2+ store is increased by the presence of Ca2+ binding proteins in the lumen of the reticulum. A diversity of physical and chemical signals, activate the main Ca2+ release channels, i.e. ryanodine receptors (RyRs) and inositol (1, 4, 5) trisphosphate receptors (IP3Rs), to produce transient elevations of the cytoplasmic calcium concentration ([Ca2+]i) while the reticulum is being depleted of Ca2+. This picture is incomplete because it implies that the elements involved in the Ca2+ release process are acting alone and independently of each other. However, it appears that the Ca2+ released by RyRs and IP3Rs is trapped in luminal Ca2+ binding proteins (Ca2+ lattice), which are associated with these release channels, and the activation of these channels appears to facilitate that the trapped Ca2+ ions become available for release. This situation makes the initial stage of the Ca2+ release process a highly efficient one; accordingly, there is a large increase in the [Ca2+]i with minimal reductions in the bulk of the free luminal SR/ER [Ca2+] ([Ca2+]SR/ER). Additionally, it has been shown that active SERCA pumps are required for attaining this highly efficient Ca2+ release process. All these data indicate that Ca2+ release by the SR/ER is a highly regulated event and not just Ca2+ coming down its electrochemical gradient via the open release channels. One obvious advantage of this sophisticated Ca2+ release process is to avoid depletion of the ER Ca2+ store and accordingly, to prevent the activation of ER stress during each Ca2+ release event.


Subject(s)
Calcium , Endoplasmic Reticulum , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
10.
Sci Rep ; 8(1): 17143, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464185

ABSTRACT

The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.


Subject(s)
Antinematodal Agents/pharmacology , Calcium/metabolism , Emetine/pharmacology , Epithelial Cells/drug effects , Myocytes, Cardiac/drug effects , trans-Golgi Network/drug effects , Cell Line , Epithelial Cells/metabolism , Humans , Myocytes, Cardiac/metabolism , trans-Golgi Network/metabolism
11.
Cell Calcium ; 65: 80-90, 2017 07.
Article in English | MEDLINE | ID: mdl-28249687

ABSTRACT

It has been shown that 2-APB is a nonspecific modulator of ion channel activity, while most of the channels are inhibited by this compound, there are few examples of channels that are activated by 2-APB. Additionally, it has been shown that, 2-APB leads to a reduction in the luminal endoplasmic reticulum Ca2+ level ([Ca2+]ER) and we have carried out simultaneous recordings of both [Ca2+]i and the [Ca2+]ER in HeLa cell suspensions to assess the mechanism involved in this effect. This approach allowed us to determine that 2-APB induces a reduction in the [Ca2+]ER by activating an ER-resident Ca2+ permeable channel more than by inhibiting the activity of SERCA pumps. Interestingly, this effect of 2-APB of reducing the [Ca2+]ER is auto-limited because depends on a replete ER Ca2+ store; a condition that thapsigargin does not require to decrease the [Ca2+]ER. Additionally, our data indicate that the ER Ca2+ permeable channel activated by 2-APB does not seem to participate in the ER Ca2+ leak revealed by inhibiting SERCA pump with thapsigargin. This work suggests that, prolonged incubations with even low concentrations of 2-APB (5µM) would lead to the reduction in the [Ca2+]ER that might explain the inhibitory effect of this compound on those signals that require Ca2+ release from the ER store.


Subject(s)
Boron Compounds/pharmacology , Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , HeLa Cells , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology
12.
Cell Calcium ; 62: 29-40, 2017 03.
Article in English | MEDLINE | ID: mdl-28169003

ABSTRACT

INTRODUCTION: Calcium (Ca2+) leak during cardiac diastole is chiefly mediated by intracellular Ca2+ channel/Ryanodine Receptors. Increased diastolic Ca2+ leak has been proposed as the mechanism underlying the appearance of hereditary arrhythmias. However, little is known about alterations in diastolic Ca2+ leak and the specific roles played by key intracellular Ca2+-handling proteins in hyperthyroidism, a known arrhythmogenic condition. AIM: We sought to determine whether there were modifications in diastolic Ca2+ leak, based on the recording of Ca2+ sparks and Ca2+ waves; we also investigated changes in the expression and activity of key Ca2+ handling proteins, including ryanodine receptors, Sarco-Endoplasmic Reticulum Ca2+ ATPase pump and calsequestrin in isolated left-ventricular cardiomyocytes isolated from hyperthyroid rats. MATERIALS AND METHODS: Electrocardiography (ECG) recordings were performed in control and hyperthyroid rats. Ca2+ sparks, Ca2+ waves, and electrically-stimulated Ca2+ transients were recorded in Fluo-3-loaded cardiomyocytes from both experimental groups using confocal microscopy. In addition, left-ventricular homogenates and Ryanodine Receptor-enriched membrane fractions were prepared for assessing [3H]-ryanodine binding, hydrolytic ATPase activity of SERCA pump and expression levels of key proteins by Western blot, and cDNA for real-time qPCR. RESULTS AND CONCLUSIONS: Extrasystoles were observed in hearts of hyperthyroid rats by ECG recordings. Arrhythmogenic activity, high incidence of Ca2+ waves, and de novo Ca2+ wavelets -in the absence of sarcoplasmic reticulum Ca2+ overload- were recorded in these cardiomyocytes. The exacerbated diastolic Ca2+ leak and arrhythmogenic activities were related to a diminished expression of calsequestrin along with increased SERCA pump activity, which, in effect, promoted a gain-of-function in RyRs without alterations in SR Ca2+ load, RyR expression or its Ca2+ sensitivity.


Subject(s)
Calcium-Binding Proteins/genetics , Calcium/metabolism , Hyperthyroidism/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium-Binding Proteins/metabolism , Calsequestrin , Male , Myocytes, Cardiac/cytology , Rats , Rats, Wistar
13.
Cell Calcium ; 65: 91-101, 2017 07.
Article in English | MEDLINE | ID: mdl-28179072

ABSTRACT

We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store.


Subject(s)
Boron Compounds/pharmacology , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology
14.
Cell Signal ; 28(1): 53-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26475209

ABSTRACT

Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Endothelial Cells/drug effects , Fatty Acids, Monounsaturated/pharmacology , Insulin Resistance/physiology , Palmitic Acid/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Apoptosis/drug effects , Cell Line , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Humans
15.
PLoS One ; 10(9): e0138195, 2015.
Article in English | MEDLINE | ID: mdl-26390403

ABSTRACT

The process of Ca2+ release from sarcoplasmic reticulum (SR) comprises 4 phases in smooth muscle cells. Phase 1 is characterized by a large increase of the intracellular Ca2+ concentration ([Ca2+]i) with a minimal reduction of the free luminal SR [Ca2+] ([Ca2+]FSR). Importantly, active SR Ca2+ ATPases (SERCA pumps) are necessary for phase 1 to occur. This situation cannot be explained by the standard kinetics that involves a fixed amount of luminal Ca2+ binding sites. A new mathematical model was developed that assumes an increasing SR Ca2+ buffering capacity in response to an increase of the luminal SR [Ca2+] that is called Kinetics-on-Demand (KonD) model. This approach can explain both phase 1 and the refractory period associated with a recovered [Ca2+]FSR. Additionally, our data suggest that active SERCA pumps are a requisite for KonD to be functional; otherwise luminal SR Ca2+ binding proteins switch to standard kinetics. The importance of KonD Ca2+ binding properties is twofold: a more efficient Ca2+ release process and that [Ca2+]FSR and Ca2+-bound to SR proteins ([Ca2+]BSR) can be regulated separately allowing for Ca2+ release to occur (provided by Ca2+-bound to luminal Ca2+ binding proteins) without an initial reduction of the [Ca2+]FSR.


Subject(s)
Caffeine/pharmacology , Calcium/metabolism , Muscle, Smooth/drug effects , Sarcoplasmic Reticulum/drug effects , Animals , Guinea Pigs , Kinetics , Male , Muscle, Smooth/metabolism , Sarcoplasmic Reticulum/metabolism
16.
Cell Calcium ; 48(2-3): 143-9, 2010.
Article in English | MEDLINE | ID: mdl-20817294

ABSTRACT

Simultaneous recording of cytosolic and sarco-endoplasmic reticulum (SR/ER) luminal free calcium concentrations ([Ca(2+)](i) and [Ca(2+)](L), respectively) supports the notion that release channels (RyRs and IP(3)Rs) use a concealed Ca(2+) source, likely to be associated with intra-SR/ER Ca(2+) binding proteins, whereas SR/ER Ca(2+) leak channels can only access free luminal Ca(2+). We hypothesize that Ca(2+) is trapped by oligomers of luminal Ca(2+)-binding proteins and that the opening of release channels induces the rapid liberation of this "concealed" Ca(2+) source associated with intra-ER Ca(2+) buffers. Our hypothesis may also clarify why SERCA pumps potentiate Ca(2+) release and explain quantal characteristics and refractory states of Ca(2+) release process.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Calcium/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Sarcoplasmic Reticulum/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Humans , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
17.
Am J Physiol Cell Physiol ; 298(5): C1038-46, 2010 May.
Article in English | MEDLINE | ID: mdl-20107042

ABSTRACT

We have previously shown that rapid inhibition of sarcoplasmic reticulum (SR) ATPase (SERCA pumps) decreases the amplitude and rate of rise (synchronization) of caffeine induced-Ca(2+) release without producing a reduction of free luminal SR Ca(2+) level in smooth muscle cells (Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A. Biophys J 85: 370-380, 2003). Our aim was to investigate the role of luminal SR Ca(2+) content in the communication between ryanodine receptors (RyRs) and SERCA pumps. To this end, we studied the effect of SERCA pump inhibition on RyR-mediated Ca(2+) release in smooth muscle cells with overloaded SR Ca(2+) stores. Under this condition, the amplitude of RyR-mediated Ca(2+) release was not affected but the rate of rise was still decreased. In addition, the caffeine-induced Ca(2+)-dependent K(+) outward currents revealed individual events, suggesting that SERCA pump inhibition reduces the coordinated activation of RyRs. Collectively, our results indicate that SERCA pumps facilitate the activation of RyRs by a mechanism that does not involve the regulation of SR Ca(2+) content. Importantly, SERCA pumps and RyRs colocalize in smooth muscle cells, suggesting a possible local communication between these two proteins.


Subject(s)
Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Caffeine/pharmacology , Calcium Channel Agonists/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Guinea Pigs , Myocytes, Smooth Muscle/drug effects , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Thapsigargin/pharmacology
18.
Cell Calcium ; 46(3): 188-96, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19679350

ABSTRACT

Sarcoplasmic reticulum contains the internal Ca(2+) store in smooth muscle cells and its lumen appears to be a continuum that lacks diffusion barriers. Accordingly, the free luminal Ca(2+) level is the same all throughout the SR; however, whether the Ca(2+) buffer capacity is the same in all the SR is unknown. We have estimated indirectly the luminal Ca(2+) buffer capacity of the SR by comparing the reduction in SR Ca(2+) levels with the corresponding increase in [Ca(2+)](i) during activation of either IP(3)Rs with carbachol or RyRs with caffeine, in smooth muscle cells from guinea pig urinary bladder. We have determined that carbachol-sensitive SR has a 2.4 times larger Ca(2+) buffer capacity than caffeine-sensitive SR. Rapid inhibition of SERCA pumps with thapsigargin revealed that this pump activity accounts for 80% and 60% of the Ca(2+) buffer capacities of carbachol- and caffeine-sensitive SR, respectively. Moreover, the Ca(2+) buffer capacity of carbachol-sensitive SR was similar to caffeine-sensitive SR when SERCA pumps were inhibited. Similar rates of Ca(2+) replenishments suggest similar levels of SERCA pump activities for either carbachol- or caffeine-sensitive SR. Paired pulses of caffeine, in conditions of low Ca(2+) influx, indicate the relevance of luminal SR Ca(2+) buffer capacity in the [Ca(2+)](i) response. To further study the importance of luminal SR Ca(2+) buffer capacity in the release process we used low levels of heparin to partially inhibit IP(3)Rs. This condition revealed carbachol-induced transient increase of luminal SR Ca(2+) levels provided that SERCA pumps were active. It thus appears that SERCA pump activity keeps the luminal SR Ca(2+)-binding proteins in the high-capacity, low-affinity conformation, particularly for IP(3)R-mediated Ca(2+) release.


Subject(s)
Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Caffeine/pharmacology , Calcium Signaling , Carbachol/pharmacology , Guinea Pigs , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/pharmacology
20.
Biophys J ; 85(1): 370-80, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12829491

ABSTRACT

Thapsigargin-sensitive sarco/endoplasmic reticulum Ca(2+) pumps (SERCAs) are involved in maintaining and replenishing agonist-sensitive internal stores. Although it has been assumed that release channels act independently of SERCA pumps, there are data suggesting the opposite. Our aim was to study the relationship between SERCA pumps and the release channels in smooth muscle cells. To this end, we have rapidly blocked SERCA pumps with thapsigargin, to avoid depletion of the internal Ca(2+) stores, and induced Ca(2+) release with either caffeine, to open ryanodine receptors, or acetylcholine, to open inositol 1,4,5-trisphosphate receptors. Blocking SERCA pumps produced smaller and slower agonist-induced [Ca(2+)](i) responses. We determined the Ca(2+) level of the internal stores both indirectly, measuring the frequency of spontaneous transient outward currents, and directly, using Mag-Fura-2, and demonstrated that the inhibition of SERCA pumps did not produce a reduction of the sarco/endoplasmic reticulum Ca(2+) levels to explain the decrease in the agonist-induced Ca(2+) responses. It appears that SERCA pumps are involved in sustaining agonist-induced Ca(2+) release by a mechanism that involves the modulation of Ca(2+) availability in the lumen of the internal stores.


Subject(s)
Calcium Signaling/physiology , Calcium-Transporting ATPases/physiology , Calcium/metabolism , Membrane Potentials/physiology , Myocytes, Smooth Muscle/physiology , Sarcoplasmic Reticulum/physiology , Animals , Caffeine/pharmacology , Calcium Signaling/drug effects , Cells, Cultured , Guinea Pigs , Membrane Potentials/drug effects , Myocytes, Smooth Muscle/drug effects , Sarcoplasmic Reticulum/drug effects , Thapsigargin/pharmacology , Urinary Bladder/drug effects , Urinary Bladder/physiology
SELECTION OF CITATIONS
SEARCH DETAIL