Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Algorithms Mol Biol ; 18(1): 11, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537624

ABSTRACT

BACKGROUND: Molecular phylogenetics studies the evolutionary relationships among the individuals of a population through their biological sequences. It may provide insights about the origin and the evolution of viral diseases, or highlight complex evolutionary trajectories. A key task is inferring phylogenetic trees from any type of sequencing data, including raw short reads. Yet, several tools require pre-processed input data e.g. from complex computational pipelines based on de novo assembly or from mappings against a reference genome. As sequencing technologies keep becoming cheaper, this puts increasing pressure on designing methods that perform analysis directly on their outputs. From this viewpoint, there is a growing interest in alignment-, assembly-, and reference-free methods that could work on several data including raw reads data. RESULTS: We present phyBWT2, a newly improved version of phyBWT (Guerrini et al. in 22nd International Workshop on Algorithms in Bioinformatics (WABI) 242:23-12319, 2022). Both of them directly reconstruct phylogenetic trees bypassing both the alignment against a reference genome and de novo assembly. They exploit the combinatorial properties of the extended Burrows-Wheeler Transform (eBWT) and the corresponding eBWT positional clustering framework to detect relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based approaches that need to fix the length k a priori). As a result, they provide novel alignment-, assembly-, and reference-free methods that build partition trees without relying on the pairwise comparison of sequences, thus avoiding to use a distance matrix to infer phylogeny. In addition, phyBWT2 outperforms phyBWT in terms of running time, as the former reconstructs phylogenetic trees step-by-step by considering multiple partitions, instead of just one partition at a time, as previously done by the latter. CONCLUSIONS: Based on the results of the experiments on sequencing data, we conclude that our method can produce trees of quality comparable to the benchmark phylogeny by handling datasets of different types (short reads, contigs, or entire genomes). Overall, the experiments confirm the effectiveness of phyBWT2 that improves the performance of its previous version phyBWT, while preserving the accuracy of the results.

2.
BMC Bioinformatics ; 21(Suppl 8): 299, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32938362

ABSTRACT

BACKGROUND: The development of Next Generation Sequencing (NGS) has had a major impact on the study of genetic sequences. Among problems that researchers in the field have to face, one of the most challenging is the taxonomic classification of metagenomic reads, i.e., identifying the microorganisms that are present in a sample collected directly from the environment. The analysis of environmental samples (metagenomes) are particularly important to figure out the microbial composition of different ecosystems and it is used in a wide variety of fields: for instance, metagenomic studies in agriculture can help understanding the interactions between plants and microbes, or in ecology, they can provide valuable insights into the functions of environmental communities. RESULTS: In this paper, we describe a new lightweight alignment-free and assembly-free framework for metagenomic classification that compares each unknown sequence in the sample to a collection of known genomes. We take advantage of the combinatorial properties of an extension of the Burrows-Wheeler transform, and we sequentially scan the required data structures, so that we can analyze unknown sequences of large collections using little internal memory. The tool LiME (Lightweight Metagenomics via eBWT) is available at https://github.com/veronicaguerrini/LiME . CONCLUSIONS: In order to assess the reliability of our approach, we run several experiments on NGS data from two simulated metagenomes among those provided in benchmarking analysis and on a real metagenome from the Human Microbiome Project. The experiment results on the simulated data show that LiME is competitive with the widely used taxonomic classifiers. It achieves high levels of precision and specificity - e.g. 99.9% of the positive control reads are correctly assigned and the percentage of classified reads of the negative control is less than 0.01% - while keeping a high sensitivity. On the real metagenome, we show that LiME is able to deliver classification results comparable to that of MagicBlast. Overall, the experiments confirm the effectiveness of our method and its high accuracy even in negative control samples.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...