Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 36(1): e14696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37877465

ABSTRACT

BACKGROUND: Gastrointestinal symptoms after drinking milk are often attributed to lactose intolerance or cow's milk allergy. However, some individuals without either condition still report gastrointestinal symptoms after drinking milk. This may be caused by gastric emptying (GE) rate or gastric protein coagulation. This study aimed to compare GE rate and protein coagulation after milk consumption between individuals reporting gastrointestinal symptoms and those without symptoms using a novel gastric MRI approach. METHODS: Thirty women were included in this case-control study, of whom 15 reported gastrointestinal symptoms after drinking milk and 15 were controls. Participants underwent gastric MRI before and up to 90 min after consumption of 250 mL cow's milk. Gastric content volume and image texture of the stomach contents were used to determine GE and changes in the degree of coagulation. KEY RESULTS: GE half-time did not differ between the groups (gastrointestinal symptom group 66 ± 18 min; control group 61 ± 14 min, p = 0.845). The gastrointestinal symptom group reported symptoms from 30 min onwards and rated pain highest at 90 min. The control group reported no symptoms. Image texture analyses showed a significantly higher percentage of coagulum and lower percentage of liquid in the group in the GI symptom group (MD 11%, 95% CI [3.9, 17], p = 0.003). In vitro data suggests that pH and proteolytic enzyme activity influence the coagulum structure. CONCLUSIONS AND INFERENCES: Gastric milk coagulation and emptied fraction of stomach content may differ between individuals experiencing symptoms after milk consumption, possibly due to differences in pH and proteolytic enzyme activity.


Subject(s)
Gastrointestinal Diseases , Milk , Animals , Cattle , Humans , Female , Milk/adverse effects , Milk/chemistry , Gastric Emptying , Case-Control Studies , Gastrointestinal Diseases/etiology , Peptide Hydrolases , Eating
2.
Eur J Nutr ; 63(3): 741-750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151533

ABSTRACT

PURPOSE: To investigate the relationships between the habitual diet, the protein to fiber ratio (P/F), and the gut microbiome in one Italian and one Dutch cohort of healthy subjects consuming an omnivore diet. METHODS: The Italian cohort included 19 males (M_IT, BMI 25.2 ± 0.72 kg/m2, age 25.4 ± 0.96 years) and 20 females (F_IT, BMI 23.9 ± 0.81 kg/m2, age 23.8 ± 0.54 years); the Dutch cohort included 30 females (F_NL, BMI: 23.9 ± 0.81 kg/m2, age: 23.8 ± 0.54 years). Individual diets were recorded through Food Frequency Questionnaires and analyzed to assess the nutrient composition. Gut microbiome was assessed in fecal samples. RESULTS: M_IT consumed higher levels of proteins than F_NL and F_IT, whereas dietary fiber intake did not differ among groups. Data showed that consumption of plant protein to animal protein (PP/AP) and PP to total proteins ratio can determine a differentiation of F_NL more than the absolute amount of dietary fiber. Conversely, the protein to fiber (P/F) and AP to total proteins better characterized M_IT. M_IT harbored the highest abundance of proteolytic microorganisms and the lowest microbial gene richness. Conversely, F_NL had more fiber-degrading microorganisms like Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, Roseburia sp., Coprococcus eutactus and Parabacteroides along with the highest number of genes encoding carbohydrate-active enzymes and gene richness. It was predicted that by each unit decrease in the P/F a 3% increase in gene richness occurred. CONCLUSION: Study findings suggested that dietary P/F, rather than the absolute amount of dietary fiber, could contribute to the shaping of the microbiome towards a more proteolytic or fiber-degrading gut ecosystem. CLINICALTRIALS: gov Identifier NCT04205045-01-10-2018, retrospectively registered. Dutch Trial Register NTR7531-05-10-2018.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Male , Female , Animals , Humans , Young Adult , Adult , Diet , Carbohydrates , Dietary Fiber/metabolism , Feces/chemistry , Dietary Proteins , Italy
3.
Food Res Int ; 170: 112953, 2023 08.
Article in English | MEDLINE | ID: mdl-37316045

ABSTRACT

Many healthy people suffer from milk-related gastrointestinal discomfort (GID) despite not being lactose intolerant; the mechanisms underpinning such condition are unknown. This study aimed to explore milk protein digestion and related physiological responses (primary outcome), gut microbiome and gut permeability in 19 lactose-tolerant healthy nonhabitual milk consumers [NHMCs] reporting GID after consuming cow milk compared to 20 habitual milk consumers [HMCs] without GID. NHMCs and HMCs participated in a milk-load (250 mL) test, underwent blood sample collection at 6 time points over 6 h after milk consumption and collected urine samples and GID self-reports over 24 h. We measured the concentrations of 31 milk-derived bioactive peptides (BAPs), 20 amino acids, 4 hormones, 5 endocannabinoid system mediators, glucose and the dipeptidyl peptidase-IV (DPPIV) activity in blood and indoxyl sulfate in urine samples. Subjects also participated in a gut permeability test and delivered feces sample for gut microbiome analysis. Results showed that, compared to HMCs, milk consumption in NHMCs, along with GID, elicited a slower and lower increase in circulating BAPs, lower responses of ghrelin, insulin, and anandamide, a higher glucose response and serum DPPIV activity. The gut permeability of the two groups was similar, while the habitual diet, which was lower in dairy products and higher in the dietary-fibre-to-protein ratio in NHMCs, possibly shaped the gut microbiome; NHMCs exhibited lower abundance of Bifidobacteria, higher abundance of Prevotella and lower abundance of protease-coding genes, which may have reduced protein digestion, as evidenced by lower urinary excretion of indoxyl sulfate. In conclusion, the findings showed that a less efficient digestion of milk proteins, supported by a lower proteolytic capability of the gut microbiome, may explain GID in healthy people after milk consumption.


Subject(s)
Gastrointestinal Microbiome , Milk , Animals , Cattle , Female , Humans , Milk Proteins , Proteolysis , Healthy Volunteers , Indican , Lactose
4.
Nutrients ; 14(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432469

ABSTRACT

The importance of optimized recovery during a sport competition is undisputed. The objective of this study was to determine the effects of recovery drinks comprising either carbohydrate only, or a mix of native whey proteins and carbohydrate to maintain physical performance and minimize muscle damage during a simulated rugby sevens (rugby 7s) tournament. Twelve well-trained male rugby players participated in three simulated rugby 7s tournament days with a week's interval in between. Each tournament comprised a sequence of three simulated matches, interspersed with 2 h of recovery. Three different recovery drinks were tested: a placebo (PLA, nonenergetic chocolate-flavored drink), a carbohydrate drink (CHO, 80 g of carbohydrate) or an isoenergetic carbohydrate-protein drink (P-CHO, 20 g of Pronativ®, native whey protein and 60 g of carbohydrate). A different recovery drink, consumed after each match, was tested during each simulated tournament. Physical performance, muscle damage and muscle pain were assessed before and after each simulated tournament. Regarding physical performance, both P-CHO and CHO drinks had a positive effect on the maintenance of 50 m sprint time compared to the PLA drink (effect sizes large and moderate, respectively). Regarding muscle damage, the P-CHO supplement attenuated the creatine phosphokinase increase at POST6 compared to PLA (effect size, moderate). Finally, P-CHO and CHO drinks reduced the exercise-induced DOMS (effect size, moderate), compared to the PLA condition (effect size, large), while P-CHO only reduced pain on muscle palpation and pain when descending stairs compared to PLA 24 h post-tournament (effect size, small). This study suggests that consuming a recovery drink containing native whey proteins and carbohydrate or carbohydrate only after each match of a rugby 7s tournament may attenuate the exercise-induced increase in markers of muscle damage and maintain physical performance.


Subject(s)
Athletic Performance , Football , Running , Male , Humans , Athletic Performance/physiology , Football/physiology , Whey Proteins , Running/physiology , Cross-Over Studies , Rugby , Physical Functional Performance , Myalgia/prevention & control , Biomarkers , Inflammation , Carbohydrates , Muscles , Polyesters
5.
Eur J Nutr ; 58(6): 2497-2510, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30069617

ABSTRACT

PURPOSE: Reduced ability of cholecystokinin (CCK) to induce satiation contributes to hyperphagia and weight gain in high-fat/high-sucrose (HF/HS) diet-induced obesity, and has been linked to altered gut microbiota. Rodent models of obesity use chow or low-fat (LF) diets as control diets; the latter has been shown to alter gut microbiota and metabolome. We aimed to determine whether LF-diet consumption impacts CCK satiation in rats and if so, whether this is prevented by addition of inulin to LF diet. METHODS: Rats (n = 40) were fed, for 8 weeks, a chow diet (chow) or low-fat (10%) or high-fat/high-sucrose (45 and 17%, respectively) refined diets with either 10% cellulose (LF and HF/HS) or 10% inulin (LF-I and HF/HS-I). Caecal metabolome was assessed by 1H-NMR-based metabolomics. CCK satiation was evaluated by measuring the suppression of food intake after intraperitoneal CCK injection (1 or 3 µg/kg). RESULTS: LF-diet consumption altered the caecal metabolome, reduced caecal weight, and increased IAP activity, compared to chow. CCK-induced inhibition of food intake was abolished in LF diet-fed rats compared to chow-fed rats, while HF/HS diet-fed rats responded only to the highest CCK dose. Inulin substitution ameliorated caecal atrophy, reduced IAP activity, and modulated caecal metabolome, but did not improve CCK-induced satiety in either LF- or HF/HS-fed rats. CONCLUSIONS: CCK signaling is impaired by LF-diet consumption, highlighting that caution must be taken when using LF diet until a more suitable refined control diet is identified.


Subject(s)
Cholecystokinin/metabolism , Diet, Fat-Restricted/methods , Satiation/physiology , Animals , Male , Models, Animal , Rats , Rats, Wistar
6.
Am J Physiol Endocrinol Metab ; 313(2): E107-E120, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28400412

ABSTRACT

Obesity and its related disorders have been associated with the presence in the blood of gut bacteria-derived lipopolysaccharides (LPS). However, the factors underlying this low-grade elevation in plasma LPS, so-called metabolic endotoxemia, are not fully elucidated. We aimed to investigate the effects of Western diet (WD) feeding on intestinal and hepatic LPS handling mechanisms in a rat model of diet-induced obesity (DIO). Rats were fed either a standard chow diet (C) or a Western Diet (WD, 45% fat) for 6 wk. They were either fed ad libitum or pair-fed to match the caloric intake of C rats for the first week, then fed ad libitum for the remaining 5 wk. Six-week WD feeding led to a mild obese phenotype with increased adiposity and elevated serum LPS-binding protein (LBP) levels relative to C rats, irrespective of initial energy intake. Serum LPS was not different between dietary groups but exhibited strong variability. Disrupted ileal mucus secretion and decreased ileal Reg3-γ and -ß gene expression along with high ileal permeability to LPS were observed in WD compared with C-fed rats. Ileal and cecal intestinal alkaline phosphatase (IAP) activity as well as Verrucomicrobia and Bifidobacterium cecal levels were increased in WD-fed rats compared with C-fed rats. WD consumption did not impact mRNA levels of LPS-handling hepatic enzymes. Correlation analysis revealed that ileal passage of LPS, IAP activity, Proteobacteria levels and hepatic aoah gene expression correlated with serum LPS and LBP, suggesting that ileal mucosal defense impairment induced by WD feeding contribute to metabolic endotoxemia.


Subject(s)
Diet, Western , Eating/physiology , Endotoxemia/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Animals , Cells, Cultured , Endotoxemia/pathology , Feeding Behavior , Ileum/pathology , Intestinal Mucosa/pathology , Male , Organ Culture Techniques , Permeability , Rats , Rats, Wistar
7.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G1-G15, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27151941

ABSTRACT

The human microbiota consists of 100 trillion microorganisms that provide important metabolic and biological functions benefiting the host. However, the presence in host plasma of a gut-derived bacteria component, the lipopolysaccharide (LPS), has been identified as a causal or complicating factor in multiple serious diseases such as sepsis and septic shock and, more recently, obesity-associated metabolic disorders. Understanding the precise mechanisms by which gut-derived LPS is transported from the gut lumen to the systemic circulation is crucial to advance our knowledge of LPS-associated diseases and elaborate targeted strategies for their prevention. The aim of this review is to synthetize current knowledge on the host mechanisms limiting the entry and dissemination of LPS into the systemic circulation. To prevent bacterial colonization and penetration, the intestinal epithelium harbors multiple defense mechanisms including the secretion of antimicrobial peptides and mucins as well as detoxification enzymes. Despite this first line of defense, LPS can reach the apical site of intestinal epithelial cells (IECs) and, because of its large size, likely crosses IECs via transcellular transport, either lipid raft- or clathrin-mediated endocytosis or goblet cell-associated passage. However, the precise pathway remains poorly described. Finally, if LPS crosses the gut mucosa, it is directed via the portal vein to the liver, where major detoxification processes occur by deacetylation and excretion through the bile. If this disposal process is not sufficient, LPS enters the systemic circulation, where it is handled by numerous transport proteins that clear it back to the liver for further excretion.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Lipopolysaccharides/blood , Liver/metabolism , Sepsis/blood , Animals , Bacteria/immunology , Bacterial Translocation , Host-Pathogen Interactions , Humans , Intestines/immunology , Intestines/microbiology , Lipopolysaccharides/chemistry , Liver/immunology , Liver/microbiology , Permeability , Sepsis/immunology , Sepsis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...