Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Inform ; 10(1): 24, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688757

ABSTRACT

While a very few studies have been conducted on classifying loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data for a single session, there are no such studies conducted for multiple session EEG data. Thus, this study aims at classifying existing raw EEG meditation data on single and multiple sessions to come up with meaningful inferences which will be highly beneficial when developing algorithms that can support meditation practices. In this analysis, data have been collected on Pre-Resting (before-meditation), Post-Resting (after-meditation), LKM-Self and LKM-Others for 32 participants and hence allowing us to conduct six pairwise comparisons for the four mind tasks. Common Spatial Patterns (CSP) is a feature extraction method widely used in motor imaginary brain computer interface (BCI), but not in meditation EEG data. Therefore, using CSP in extracting features from meditation EEG data and classifying meditation/non-meditation instances, particularly for multiple sessions will create a new path in future meditation EEG research. The classification was done using Linear Discriminant Analysis (LDA) where both meditation techniques (LKM-Self and LKM-Others) were compared with Pre-Resting and Post-Resting instances. The results show that for a single session of 32 participants, around 99.5% accuracy was obtained for classifying meditation/Pre-Resting instances. For the 15 participants when using five sessions of EEG data, around 83.6% accuracy was obtained for classifying meditation/Pre-Resting instances. The results demonstrate the ability to classify meditation/Pre-Resting data. Most importantly, this classification is possible for multiple session data as well. In addition to this, when comparing the classification accuracies of the six mind task pairs; LKM-Self, LKM-Others and Post-Resting produced relatively lower accuracies among them than the accuracies obtained for classifying Pre-Resting with the other three. This indicates that Pre-Resting has some features giving a better classification indicating that it is different from the other three mind tasks.

2.
Sensors (Basel) ; 22(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366154

ABSTRACT

Sensor-based human activity recognition has been extensively studied. Systems learn from a set of training samples to classify actions into a pre-defined set of ground truth activities. However, human behaviours vary over time, and so a recognition system should ideally be able to continuously learn and adapt, while retaining the knowledge of previously learned activities, and without failing to highlight novel, and therefore potentially risky, behaviours. In this paper, we propose a method based on compression that can incrementally learn new behaviours, while retaining prior knowledge. Evaluation was conducted on three publicly available smart home datasets.


Subject(s)
Human Activities , Machine Learning , Humans
3.
Sensors (Basel) ; 21(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804611

ABSTRACT

Motor imagery (MI) based brain-computer interface (BCI) aims to provide a means of communication through the utilization of neural activity generated due to kinesthetic imagination of limbs. Every year, a significant number of publications that are related to new improvements, challenges, and breakthrough in MI-BCI are made. This paper provides a comprehensive review of the electroencephalogram (EEG) based MI-BCI system. It describes the current state of the art in different stages of the MI-BCI (data acquisition, MI training, preprocessing, feature extraction, channel and feature selection, and classification) pipeline. Although MI-BCI research has been going for many years, this technology is mostly confined to controlled lab environments. We discuss recent developments and critical algorithmic issues in MI-based BCI for commercial deployment.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Imagination
4.
Sensors (Basel) ; 20(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210199

ABSTRACT

Activity recognition plays a central role in many sensor-based applications, such as smart homes for instance. Given a stream of sensor data, the goal is to determine the activities that triggered the sensor data. This article shows how spatial information can be used to improve the process of recognizing activities in smart homes. The sensors that are used in smart homes are in most cases installed in fixed locations, which means that when a particular sensor is triggered, we know approximately where the activity takes place. However, since different sensors may be involved in different occurrences of the same type of activity, the set of sensors associated with a particular activity is not precisely defined. In this article, we use rough sets rather than standard sets to denote the sensors involved in an activity to model, which enables us to deal with this imprecision. Using publicly available data sets, we will demonstrate that rough sets can adequately capture useful information to assist with the activity recognition process. We will also show that rough sets lend themselves to creating Explainable Artificial Intelligence (XAI). activity recognition; context awareness; spatial reasoning; rough sets.

5.
Sensors (Basel) ; 19(2)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658523

ABSTRACT

Electroencephalogram (EEG) based motor imagery brain⁻computer interface (BCI) requires large number of subject specific training trials to calibrate the system for a new subject. This results in long calibration time that limits the BCI usage in practice. One major challenge in the development of a brain⁻computer interface is to reduce calibration time or completely eliminate it. To address this problem, existing approaches use covariance matrices of electroencephalography (EEG) trials as descriptors for decoding BCI but do not consider the geometry of the covariance matrices, which lies in the space of Symmetric Positive Definite (SPD) matrices. This inevitably limits their performance. We focus on reducing calibration time by introducing SPD based classification approach. However, SPD-based classification has limited applicability in small training sets because the dimensionality of covariance matrices is large in proportion to the number of trials. To overcome this drawback, our paper proposes a new framework that transforms SPD matrices in lower dimension through spatial filter regularized by prior information of EEG channels. The efficacy of the proposed approach was validated on the small sample scenario through Dataset IVa from BCI Competition III. The proposed approach achieved mean accuracy of 86.13 % and mean kappa of 0.72 on Dataset IVa. The proposed method outperformed other approaches in existing studies on Dataset IVa. Finally, to ensure the robustness of the proposed method, we evaluated it on Dataset IIIa from BCI Competition III and Dataset IIa from BCI Competition IV. The proposed method achieved mean accuracy 92.22 % and 81.21 % on Dataset IIIa and Dataset IIa, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL