Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-18577461

ABSTRACT

The lipid, fatty acid (FA), and sterol composition of two ophiuroids and four holothurians from the abyssal eastern North Pacific were analysed to assess their feeding habits and to ascertain their composition for use in a larger study to examine food web dynamics and trophic ecology. Holothurians were rich in phytosterols and algal derived FA such as docosahexaenoic acid and eicosapentaenoic suggesting tight trophic coupling to phytodetritus. Large proportions of stanols were found, probably a result of enteric bacteria but they may come from sterol metabolism in the holothurians themselves. Oneirophanta mutabilis was distinct with much higher levels of stanols and bacterially derived FA suggesting specific selection of bacteria rich detrital particles or the activity of enteric and integumental bacteria. The ophiuroids sterol and FA compositions differed greatly from the holothurians and reflected consumption of animal material in addition to phytodetritus. Large proportions of energy storage lipids suggested a sporadic food supply. Several unusual fatty acids were found in these abyssal echinoderms. Tetracosahexaenoic acid, 24:6omega3, in ophiuroids and 23:1 in holothurians may be good biomarkers for food web studies. We report the first occurrence of alphaOH 24:1 in holothurians with none detected in ophiuroids. Its function is presently unknown.


Subject(s)
Echinodermata/chemistry , Fatty Acids/analysis , Food Chain , Lipids/analysis , Sterols/analysis , Animals , Biomarkers/analysis , Ecology , Feeding Behavior , Pacific Ocean
2.
Oecologia ; 148(1): 88-96, 2006 May.
Article in English | MEDLINE | ID: mdl-16463177

ABSTRACT

In theory, carbon is highly mobile in aquatic systems. Recent evidence from carbon stable isotopes of crabs (Parasesarma erythrodactyla and Australoplax tridentata), however, shows that in subtropical Australian waters, measurable carbon movement between adjacent mangrove and saltmarsh habitats is limited to no more than a few metres. We tested whether the pattern in crab delta13C values across mangrove and saltmarsh habitats was explained by crab movement, or the movement of particulate organic matter. We estimated crab movement in a mark-recapture program using an array of pitfall traps on 13 transects (a total of 65 traps) covering an area of 600 m2 across the interface of these two habitats. Over a 19-day period, the majority of crabs (91% for P. erythrodactyla, 93% for A. tridentata) moved <2 m from the place of initial capture. Crab movement cannot, therefore, explain the patterns in delta13C values of crabs. delta13C values of detritus collected at 2-m intervals across the same habitat interface fitted a sigmoidal curve of a similar form to that fitting the delta13C values of crabs. delta13C values of detritus were 2-4 per thousand more depleted in saltmarsh (-18.5+/-0.6 per thousand), and 4-7 per thousand more depleted in mangroves (-25.9+/-0.1 per thousand) than delta13C values of crabs recorded previously in each habitat. Assimilation by crabs of very small detrital fragments or microphytobenthos, more enriched in 13C, may explain the disparity in delta13C values. Nevertheless, the pattern in delta13C values of detritus suggests that crabs obtain their carbon from up to several metres away, but without themselves foraging more then a metre or so from their burrow. Such detailed measurements of carbon movement in estuaries provide a spatially explicit understanding of the functioning of food webs in saltmarsh and mangrove habitats.


Subject(s)
Brachyura/physiology , Carbon/metabolism , Ecosystem , Animals , Australia , Carbon Isotopes , Feeding Behavior , Motor Activity/physiology , Time Factors
3.
Oecologia ; 144(4): 684-91, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16001216

ABSTRACT

We measured the extent of movement of carbon and its assimilation by invertebrates among estuarine habitats by analysing carbon stable isotopes of invertebrates collected along transects crossing the boundary of two habitats. The habitats were dominated by autotrophs with distinct isotope values: (1) mudflats containing benthic microalgae (mean -22.6, SE 0.6 per thousand) and (2) seagrass and its associated epiphytic algae (similar values, pooled mean -9.8, 0.5 per thousand). Three species of invertebrates were analysed: a palaemonid shrimp, Macrobrachium intermedium, and two polychaete worms, Nephtys australiensis and Australonereis ehlersi. All species had a similar narrow range of isotope values (-9 to -14 per thousand), and showed no statistically significant relationship between position along transect and isotope values. Animals were relying on carbon from seagrass meadows whether they were in seagrass or on mudflats hundreds of metres away. Particulate organic matter collected from superficial sediments along the transects had similar values to animals (mean -11.1, SE 1.3 per thousand) and also showed no significant relationship with position. The isotope values of these relatively immobile invertebrates and the particulate detritus suggest that carbon moves from subtidal seagrass meadows to mudflats as particulate matter and is assimilated by invertebrates. This assimilation might be direct in the case of the detritivorous worm, A. ehlersi, but must be via invertebrate prey in the case of the carnivorous worm, N. australiensis and the scavenging shrimp, M. intermedium. The extent of movement of carbon among habitats, especially towards shallower habitats, is surprising since in theory, carbon is more likely to move offshore in situations such as the current study where habitats are in relatively open, unprotected waters.


Subject(s)
Carbon Isotopes/metabolism , Palaemonidae/metabolism , Polychaeta/metabolism , Animals , Biological Transport, Active , Ecosystem
4.
Oecologia ; 138(2): 161-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14593525

ABSTRACT

Ecological applications of stable isotope analysis rely on different producers having distinct isotopic ratios to trace energy and nutrient transfer to consumers. Carbon (C) and nitrogen (N) are the usual elements analysed. We tested the hypothesis that producers unable to be separated using C and N would be separated by sulphur (S), by reviewing estuarine and marine food web studies using all three elements (total of 836 pairwise comparisons between producers). S had a wider range of values across all producers than C and N (S: 34.4, C: 23.3, N: 18.7 per thousand ), and a higher mean difference among producers (S: 9.3, C: 6.5, N: 3.3 per thousand ). We varied from 1 to 10 per thousand the distance producers must be apart to be considered separate. For each of these gap distances, S-separated producers tied on C and N in 40% or more of cases. Comparing the three elements individually, S had fewer tied pairs of producers for any gap distance than C or N. However, S also has higher within-producer variability. Statistical tests on simulated data showed that this higher variability caused S to be less effective than C for analysing differences among mean producer values, yet mixing models showed that S had the smallest confidence intervals around mean estimates of source contributions to consumers. We also examined the spatial and temporal scales over which S isotope signatures of the saltmarsh plant Spartina alterniflora varied. Differences between samples taken within tens of metres were smallest, but between samples hundreds of metres apart were as different as samples thousands of kilometres apart. The time between samples being taken did not influence S signatures. Overall, the use of S is recommended because it has a high probability of distinguishing the contribution of different producers to aquatic food webs. When two elements are employed, the combination of S and C separates more producers than any other combination.


Subject(s)
Carbon/metabolism , Environmental Monitoring/methods , Food Chain , Nitrogen/metabolism , Animals , Poaceae/physiology , Sensitivity and Specificity , Sulfur Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...