Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cancer Prev ; 31(1): 50-53, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34871198

ABSTRACT

The cancer chemopreventive potential of various solvent extracts from six medicinal plants was evaluated by their ability to activate the transcription factor Nrf2 using AREc32 cells, which contain a luciferase gene under the control of antioxidant responsive element promoters. Nrf2 regulates the expression of many detoxification enzymes, making it an ideal target for cancer prevention. The present research revealed Zanthoxylum zanthoxyloides extracts as promising sources of cancer chemopreventive compounds. Bioassay-guided isolation of the Z. Zanthoxyloides methanol extract resulted in the isolation of N-methylatanine, N-methylplatydesminecation, sesamin and skimmianine. Among these compounds, skimmianine was identified as the most active compound, causing a 2.8-fold increase in luciferase activity. Skimmianine and other related quinolone alkaloids could represent an appropriate starting scaffold for the development of new chemopreventive cancer drugs.


Subject(s)
Anticarcinogenic Agents , Breast Neoplasms , Plants, Medicinal , Anticarcinogenic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Female , Humans , Lead , Luciferases , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism
2.
BMC Complement Med Ther ; 21(1): 234, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34537049

ABSTRACT

BACKGROUND: Uvaria chamae (UC) and Olax subscorpioidea (OS) roots are included in traditional anti-cancer remedies and some studies have identified their chemopreventive/chemotherapeutic potential. This study aimed to identify some cellular/molecular mechanisms underlying such potential and the associated chemical constituents. METHODS: Effect on the viability of cancer cells was assessed using the Alamar Blue assay; ability to modulate oxidative stress was assessed using the 2',7'-dichlorofluorescein diacetate (DCFDA) assay; potential to modulate Nuclear factor erythroid 2-related factor like-2 (Nrf2) activity was assessed in the AREc32 luciferase reporter cell line; and anti-inflammatory effect was assessed using lipopolysaccharide-induced nitric oxide release model in the RAW264.7 cells (Griess Assay). Chemical constituents were identified through liquid chromatography-mass spectrometry (LC-MS). RESULTS: Extracts up to 100 µg/ml were non-toxic or mildly toxic to HeLa, AREc32, PC3 and A549 cells (IC50 > 200 µg/ml). Each extract reduced basal and peroxide-induced levels of reactive oxygen species (ROS) in HeLa cells. OS and UC activated Nrf2, with UC producing nearly four-fold induction. Both extracts demonstrated anti-inflammatory effects. Chamanetin, isochamanetin, isouvaretin, uvaricin I and other compounds were found in U. chamae root extract. CONCLUSION: As Nrf-2 induction, antioxidant and anti-inflammatory activities are closely linked with chemoprevention and chemotherapy of cancers, the roles of these plants in traditional anti-cancer remedies are further highlighted, as is their potential as sources of drug leads.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Neoplasms/drug therapy , Olacaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Uvaria/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Basic-Leucine Zipper Transcription Factors/drug effects , Cell Survival/drug effects , Cells, Cultured/drug effects , Doxorubicin/therapeutic use , Humans , Plant Extracts/chemistry , Plant Roots/chemistry , Plants, Medicinal/chemistry , Streptomyces/chemistry
3.
J Pharm Pharmacol ; 73(1): 118-134, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33791805

ABSTRACT

OBJECTIVES: The effects of a root extract of Zanthoxylum zanthoxyloides on neuroinflammation in BV-2 microglia stimulated with LPS and hemozoin were investigated. METHODS: ELISA, enzyme immunoassay and Griess assay were used to evaluate levels of cytokines, PGE2 and NO in culture supernatants, respectively. Microglia-mediated neurotoxicity was evaluated using a BV-2 microglia-HT-22 neuron transwell co-culture. KEY FINDINGS: Treatment with Z. zanthoxyloides caused reduced elevated levels of TNFα, IL-6, IL-1ß, NO and PGE2, while increasing the levels of IL-10. In addition, there were reduced levels of iNOS and COX-2 proteins. This was accompanied by a prevention of microglia-mediated damage to HT-22 mouse hippocampal neurons. Z. zanthoxyloides reduced elevated levels of phospho-IκB and phospho-p65, while preventing degradation of IκB protein and DNA binding of p65. Further mechanistic studies revealed that Z. zanthoxyloides reduced the levels of pro-IL-1ß and IL-1ß in hemozoin-activated BV-2 microglia. This was accompanied by a reduction in caspase-1 activity and NLRP3 protein expression. Bioassay-guided fractionation resulted in the isolation of skimmianine as an anti-inflammatory compound in Z. zanthoxyloides. CONCLUSION: This is the first report showing the inhibition of neuroinflammation in LPS- and hemozoin-activated BV-2 microglia by the root extract of Z. zanthoxyloides by targeting the activation of both NF-κB and NLRP3 inflammasome.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/metabolism , Microglia/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Quinolines/pharmacology , Zanthoxylum/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Caspase 1/metabolism , Cell Line , Cyclooxygenase 2 Inhibitors/isolation & purification , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Cytokines/metabolism , Hemeproteins , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/prevention & control , Interleukin-1beta/metabolism , Lipopolysaccharides , Mice , Microglia/metabolism , Microglia/pathology , Nitric Oxide Synthase Type II/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Roots , Quinolines/isolation & purification , Quinolines/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...