Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1127-L1140, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30908937

ABSTRACT

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.


Subject(s)
Apoptosis/physiology , Macrophages, Alveolar/pathology , Orthomyxoviridae Infections/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Tissue Kallikreins/metabolism , A549 Cells , Acute Lung Injury/pathology , Acute Lung Injury/virology , Animals , Cell Line , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Dogs , Granulocyte-Macrophage Colony-Stimulating Factor/analysis , Humans , Influenza A Virus, H3N2 Subtype , Killer Cells, Natural/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Mucosa/metabolism , Tissue Kallikreins/antagonists & inhibitors , Tissue Kallikreins/genetics
2.
Front Oncol ; 8: 517, 2018.
Article in English | MEDLINE | ID: mdl-30483475

ABSTRACT

The efficacy of an antitumoral vaccine relies both on the choice of the antigen targeted and on its design. The tumor antigen survivin is an attractive target to develop therapeutic cancer vaccines because of its restricted over-expression and vital functions in most human tumors. Accordingly, several clinical trials targeting survivin in various cancer indications have been conducted. Most of them relied on short peptide-based vaccines and showed promising, but limited clinical results. In this study, we investigated the immunogenicity and therapeutic efficacy of a new long synthetic peptide (LSP)-based cancer vaccine targeting the tumor antigen survivin (SVX). This SVX vaccine is composed of three long synthetic peptides containing several CD4+ and CD8+ T-cell epitopes, which bind to various HLA class II and class I molecules. Studies in healthy individuals showed CD4+ and CD8+ T-cell immunogenicity of SVX peptides in human, irrespective of the individual's HLA types. Importantly, high frequencies of spontaneous T-cell precursors specific to SVX peptides were also detected in the blood of various cancer patients, demonstrating the absence of tolerance against these peptides. We then demonstrated SVX vaccine's high therapeutic efficacy against four different established murine tumor models, associated with its capacity to generate both specific cytotoxic CD8+ and multifunctional Th1 CD4+ T-cell responses. When tumors were eradicated, generated memory T-cell responses protected against rechallenge allowing long-term protection against relapses. Treatment with SVX vaccine was also found to reshape the tumor microenvironment by increasing the tumor infiltration of both CD4+ and CD8+ T cells but not Treg cells therefore tipping the balance toward a highly efficient immune response. These results highlight that this LSP-based SVX vaccine appears as a promising cancer vaccine and warrants its further clinical development.

3.
Biol Chem ; 399(9): 1053-1064, 2018 09 25.
Article in English | MEDLINE | ID: mdl-29883316

ABSTRACT

Every year, influenza A virus (IAV) affects and kills many people worldwide. The viral hemagglutinin (HA) is a critical actor in influenza virus infectivity which needs to be cleaved by host serine proteases to exert its activity. KLK5 has been identified as an activating protease in humans with a preference for the H3N2 IAV subtype. We investigated the origin of this preference using influenza A/Puerto Rico/8/34 (PR8, H1N1) and A/Scotland/20/74 (Scotland, H3N2) viruses. Pretreatment of noninfectious virions with human KLK5 increased infectivity of Scotland IAV in MDCK cells and triggered influenza pneumonia in mice. These effects were not observed with the PR8 IAV. Molecular modeling and in vitro enzymatic studies of peptide substrates and recombinant HAs revealed that the sequences around the cleavage site do not represent the sole determinant of the KLK5 preference for the H3N2 subtype. Using mouse Klk5 and Klk5-deficient mice, we demonstrated in vitro and in vivo that the mouse ortholog protease is not an IAV activating enzyme. This may be explained by unfavorable interactions between H3 HA and mKlk5. Our data highlight the limitations of some approaches used to identify IAV-activating proteases.


Subject(s)
Disease Models, Animal , Influenza A virus/metabolism , Kallikreins/metabolism , Serine Proteases/metabolism , Animals , Dogs , Humans , Kallikreins/deficiency , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Models, Molecular , Seasons
4.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28615200

ABSTRACT

Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV in vitro and in vivo Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/growth & development , Kallikreins/metabolism , Animals , Body Weight , Cells, Cultured , Disease Models, Animal , Epithelial Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Mice, Inbred C57BL , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Proteolysis , Survival Analysis
5.
Oncotarget ; 7(34): 54415-54429, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27384673

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide. Although the recommended tumor, node and metastasis (TNM) classification and stage determination are important to select therapeutic options for patients with non-small cell lung carcinoma (NSCLC), additional molecular markers are required to indicate the prognosis, in particular within a specific stage, and help with the management of patients.Because neonatal Fc receptor (FcRn) has recently been involved in colon cancer immunosurveillance, we measured its expression in non-cancerous and NSCLC lung tissues and evaluated its prognostic value in overall survival for patient with NSCLC. FcRn expression was determined at both mRNA and protein levels on cancerous and adjacent non-cancerous tissues from 80 NSCLC patients. In NSCLC, FcRn was mainly found in resident and tumor infiltrating immune cells. The corresponding mRNA and protein were significantly less abundant in lung tumor than non-cancerous tissue. Moreover, analysis of our cohort and datasets from the public data bases show that FCGRT mRNA down-regulation is a robust and independent, unfavorable predictive factor of NSCLC patient survival. We conclude that FCGRT mRNA expression may be a useful additional marker for immunoscoring, reflecting tumor immune system, and help in the decision-making process for NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/mortality , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Lung Neoplasms/mortality , Receptors, Fc/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/immunology , Down-Regulation , Female , Histocompatibility Antigens Class I/analysis , Humans , Lung/chemistry , Lung Neoplasms/immunology , Male , Middle Aged , Prognosis , Proportional Hazards Models , RNA, Messenger/analysis , Receptors, Fc/analysis
6.
Gene ; 586(1): 176-83, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27080955

ABSTRACT

The CCN proteins are key signaling and regulatory molecules involved in many biological functions and contribute to malignant and non-malignant lung diseases. Despite the high morbidity and mortality of the lung respiratory infectious diseases, there is very little data related to the expression of the CCNs during infection. We investigated in mice the pulmonary mRNA expression levels of five CCNs (1 to 5) in response to influenza A virus (IAV) and bacterial agents (Nontypeable Haemophilus influenzae (NTHi), lipopolysaccharide (LPS) and lipoteichoic acid (LTA)). IAV, NTHi, LPS or LTA were instilled intranasally into mice. Mice were also exposed for 4days or 8weeks to cigarette smoke alone or prior infection to IAV in order to determine if CS modifies the CCN response to a viral infection. All challenges induced a robust inflammation. The mRNA expression of CCN1, CCN2 and CCN3 was decreased after short exposure to CS whereas prolonged exposure altered the expression of CCN1, CCN3 and CCN4. Influenza A virus infection increased CCN1, 2, 4 and 5 mRNA levels but expression of CCN3 was significantly decreased. Acute CS exposure prior infection had little effect on the expression of CCN genes but prolonged exposure abolished the IAV-dependent induction. Treatment with LPS or LTA and infection with NTHi revealed that both Gram-positive and Gram-negative bacteria rapidly modulate the expression of the CCN genes. Our findings reveal that several triggers of lung inflammation influence differently the CCN genes. CCN3 deserves special attention since its mRNA expression is decreased by all the triggers studied.


Subject(s)
CCN Intercellular Signaling Proteins/immunology , Haemophilus Infections/immunology , Orthomyxoviridae Infections/immunology , Pneumonia/immunology , Smoking , Animals , CCN Intercellular Signaling Proteins/genetics , Connective Tissue Growth Factor/metabolism , Cysteine-Rich Protein 61/metabolism , Disease Models, Animal , Female , Haemophilus influenzae/physiology , Influenza A virus/physiology , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nephroblastoma Overexpressed Protein/metabolism , Pneumonia/microbiology , Pneumonia/virology , Proto-Oncogene Proteins/genetics
8.
Eur Respir J ; 46(3): 771-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26250498

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as ß-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.


Subject(s)
Epithelial Cells/enzymology , Immunity, Innate/drug effects , Neutrophils/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Receptors, Interleukin/metabolism , Animals , Biomarkers/metabolism , Blotting, Western , Cells, Cultured , Disease Models, Animal , Epithelial Cells/microbiology , Humans , Immunity, Innate/physiology , Mice , Neutrophils/drug effects , Peptide Hydrolases/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Real-Time Polymerase Chain Reaction , Receptors, Interleukin/immunology , Sampling Studies , Sensitivity and Specificity , Smoking/adverse effects , Statistics, Nonparametric , beta-Defensins/pharmacology
9.
Eur J Med Chem ; 95: 369-76, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25827403

ABSTRACT

We report the synthesis of acid-responsive polymeric nanoparticles (NPs) consisting of a polymer-histone deacetylase inhibitor conjugate. An innovative aspect of this drug delivery particle lies in the NP conjugation of a histone deacetylase (HDAC) inhibitor, CI-994 (Tacedinaline), introduced with a clickable acid-responsive prodrug during monomer synthesis, prior to polymerization. Another novelty lies in the selected norbornene (NB)-polyethylene oxide (PEO) macromonomer allowing standardization of the polymerization process by Ring-Opening Metathesis Polymerization (ROMP) and functionalization through azide-alkyne click chemistry. Herein we demonstrate that the synthesized polymer gave 300 nm core-shell spherical nanoparticles with low dispersity (0.04), high water dispersability thanks to the PEO shell and well controlled HDAC inhibitor prodrug loading. Bioluminescence Resonance Energy Transfer (BRET) assay in living cells and viability experiments demonstrated efficient cellular internalization without additional chemistry, drug release inside cells with restoration of the HDAC inhibition and induction of apoptosis. Such NPs should minimize drug release in vivo during blood circulation and trigger intracellular delivery after endocytosis, holding promises for improved efficacy of this class of epigenetic inhibitors. This standardized synthesis paves the way for multifunctional nanoparticles synthesis.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Histone Deacetylase Inhibitors/chemistry , Nanoparticles , Phenylenediamines/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzamides , Cell Line, Tumor , Drug Carriers/toxicity , Drug Liberation , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydrogen-Ion Concentration , Particle Size , Phenylenediamines/pharmacology , Polymerization
10.
Tumour Biol ; 36(7): 4979-86, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25677900

ABSTRACT

The KLK13 gene is dysregulated in several carcinomas, and its expression levels seem to be associated with disease prognosis. The aim of our study was to investigate the prognostic potential of KLK13 mRNA expression for patients with nonsmall cell lung cancer (NSCLC). Total RNA was isolated from cancerous and normal tissues from a cohort of 128 NSCLC patients. The KLK13 mRNA transcription levels were measured using a sensitive quantitative RT-PCR method. The results were normalized by dividing the KLK13 mRNA values with the geometric mean of mRNA expression from four reference genes: beta-actin, TATA-binding protein, hypoxanthine phosphoribosyltransferase 1, and acidic ribosomal phosphoprotein P0. The malignant tissues from the majority of patients (59.3 %) contained significantly more KLK13 mRNA transcripts than did the paired nonmalignant tissues (median difference 11.1-fold, P = 0.008). KLK13 was expressed at higher levels in females than that in males (P = 0.021). No other statistically significant association with clinicopathological data was observed. Kaplan-Meier survival analyses demonstrated that patients with KLK13-positive tumors survived significantly longer than those with KLK13-negative ones (P = 0.009). KLK13 expression was also shown to be able to stratify high-risk individuals among patients with early disease stages (P = 0.030). Multivariate Cox regression analysis showed that KLK13 expression is a favorable, independent prognostic indicator of overall survival (OS) (P = 0.024). Our results suggest that KLK13 mRNA expression constitutes a novel biomarker for the prediction of overall survival in NSCLC and that its quantitative assessment in tumor tissues can aid in treatment decision making.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Kallikreins/genetics , Prognosis , Adult , Aged , Biomarkers, Tumor/biosynthesis , Carcinoma, Non-Small-Cell Lung/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Kallikreins/biosynthesis , Kaplan-Meier Estimate , Male , Middle Aged , RNA, Messenger/biosynthesis
11.
Biomacromolecules ; 15(12): 4534-43, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25333409

ABSTRACT

In vivo histone deacetylase (HDAC) inhibition by vorinostat under clinically acceptable dosing is limited by its poor pharmacokinetics properties. A new type of nontoxic pH-responsive delivery system has been synthesized by ring-opening metathesis polymerization, allowing for the selective distribution of vorinostat in mesothelioma tumors in vivo and subsequent histone reacetylation. The delivery system is synthesized by generic click chemistry, possesses native stealth properties for passive tumor targeting, and does not need additional chemistry for cellular internalization. Although vorinostat alone at 50 mg/kg in mice showed no effect, our new delivery system with 2 mg/kg vorinostat promoted histone reacetylation in tumors without side effects, demonstrating that our strategy improves the activity of this HDAC inihibitor in vivo.


Subject(s)
Drug Delivery Systems , Hydroxamic Acids/pharmacology , Nanoparticles/chemistry , Polymers/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Click Chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydrogen-Ion Concentration , Hydroxamic Acids/chemistry , Mesothelioma/drug therapy , Mice , Mice, Nude , Polymers/chemistry , Transfection , Vorinostat
12.
Oncotarget ; 5(12): 4504-15, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24980825

ABSTRACT

Histone deacetylase inhibitors (HDACi) have shown promising antitumor effects on numerous cancer cells including malignant pleural mesothelioma (MPM) and lung adenocarcinoma (ADCA) cells. However, clinical trials using these compounds alone have shown limited efficacy against solid tumors. Therefore, new molecules are being developed and combinations with classical chemotherapeutic drugs are being tested. Here, we have evaluated on three MPM and three lung ADCA cell lines the antitumor potential of four new HDACi compounds, either alone or in combination with cisplatin. These effects were compared with those of vorinostat, an HDACi approved for cancer treatments. First, we characterized the HDAC mRNA expression profiles of tumor cells and showed an increase of the classI/classII HDAC ratio. We then treated cancer cells with these new HDACi and observed a cell-death induction and an increase of HDACi target genes and proteins expression. This was particularly evident for NODH compound (pan-HDACi) which had similar effects at nanomolar concentrations as micromolar concentrations of vorinostat. Interestingly, we observed that the HDACi/cisplatin combination strongly increased cell-death and limited resistance-phenotype emergence as compared with results obtained when the drugs were used alone. These results could be exploited to develop MPM and lung ADCA treatments combining chemotherapeutic approaches.


Subject(s)
Cisplatin/pharmacology , Histone Deacetylase Inhibitors/metabolism , Thoracic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Humans
13.
Biomacromolecules ; 14(7): 2396-402, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23731363

ABSTRACT

We described a norbornenyl-poly(ethylene oxide) nanoparticles ligand-free generic platform, made fluorescent with straightforward preparation by ring-opening metathesis polymerization (ROMP). Our method allowed to easily obtain a drug delivery system (DDS) with facilitated functionalization by means of azide-alkyne click chemistry and with a high selectivity for the tumor in vivo, while cellular internalization is obtained without cell targeting strategy. We demonstrated that our nanoparticles are internalized by endocytosis and colocalized with acidic intracellular compartments in two models of aggressive tumoral cell lines with low prognostic and limited therapeutic treatments. Our nanoparticles could be of real interest to limit the toxicity and to increase the clinical benefit of drugs suffering rapid clearance and side effects and an alternative for cancers with poorly efficient therapeutic solutions by associating the drug delivery in the tumor tissue with an acid-sensitive release system.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Polyethylene Glycols/metabolism , Adenocarcinoma of Lung , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Endocytosis , Humans , Mesothelioma, Malignant , Mice , Mice, Nude , Nanoparticles , Neoplasm Transplantation , Polyethylene Glycols/chemistry , Polymerization , Polymers
14.
J Thorac Oncol ; 7(5): 883-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22729037

ABSTRACT

INTRODUCTION: Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis. One major challenge for this disease is the development of new, early, and highly reliable diagnostic markers. The aim of this study was to compare the diagnostic value of the chemokine chemokine (C-C motif) ligand 2 (CCL2), galectin-3, and the secretory leukocyte peptidase inhibitor (SLPI) with soluble mesothelin-related peptides (SMRP), and to evaluate the diagnostic performance of marker combinations. METHODS: The levels of the different markers were measured by enzyme-linked immunosorbent assay in pleural fluids from patients with MPM (n = 61), adenocarcinomas (ADCA, n = 25), or with benign pleural effusions (BPE, n = 15). RESULTS: SMRP, SLPI, and CCL2 concentrations were significantly higher in pleural effusions from mesothelioma patients. Conversely, galectin-3 levels seemed to be elevated in patients with pulmonary ADCA. Receiver operating characteristic curve analysis revealed that SMRP (area under the curve [AUC] = 0.9059), CCL2 (AUC = 0.7912), galectin-3 (AUC = 0.7584), and SLPI (AUC = 0.7219) were potentially interesting biomarkers for the differentiation of MPM patients from those with BPE or ADCA. Of interest, we showed that the combination of SMRP/CCL2/galectin-3 greatly improved MPM diagnosis (AUC = 0.9680), when compared with SMRP alone. CONCLUSION: The combination of SMRP/CCL2/galectin-3 seems to represent a promising panel of biomarkers for the reliable diagnosis of MPM in pleural fluids.


Subject(s)
Adenocarcinoma/diagnosis , Chemokine CCL2/metabolism , Galectin 3/metabolism , Membrane Proteins/metabolism , Mesothelioma/diagnosis , Multidrug Resistance-Associated Proteins/metabolism , Pleural Effusion/diagnosis , Adenocarcinoma/metabolism , Aged , Area Under Curve , Biomarkers, Tumor/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mesothelioma/metabolism , Nerve Tissue Proteins , Pleural Effusion/metabolism , Prognosis , ROC Curve , Sensitivity and Specificity
15.
Eur J Immunol ; 42(3): 783-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22144115

ABSTRACT

Research into new treatments against malignant pleural mesothelioma (MPM) is of great interest, as this aggressive cancer is often resistant to conventional therapies. One potential strategy is the use of epigenetic drugs, such as 5-aza-2'-deoxycytidine (5-azaCdR), a DNA-hypomethylating drug, and valproate (VPA), a histone deacetylase inhibitor (HDACi). Indeed, these drugs not only trigger MPM cell death, but also induce the expression of cancer testis antigens recognized by CD8(+) T cells, such as New York-esophageal cancer-1 (NY-ESO-1). The objective of this study was to assess effects of these drugs on the expression and recognition by CD8(+) T cells of Mucin1 (MUC1), a tumor-associated antigen that is overexpressed by MPM. MPM tumor cell lines were treated with epigenetic drugs, alone or in combination. MUC1 expression by MPM cells, and its recognition by a MUC1-specific CD8(+) T-cell clone, was downregulated by HDACi when used alone or in combination with 5-azaCdR. This effect was not due to a blocking of the HLA class I presentation pathway in treated MPM cells, as NY-ESO-1 induced by 5-azaCdR alone, or with VPA, was recognized by a NY-ESO-1-specific T-cell clone. This study suggests that the choice of tumor antigens could be critical for strategies combining epigenetic drugs with immunotherapy.


Subject(s)
Azacitidine/analogs & derivatives , CD8-Positive T-Lymphocytes/immunology , Histone Deacetylase Inhibitors/pharmacology , Mesothelioma/immunology , Mucin-1/immunology , Valproic Acid/pharmacology , Antigens, Neoplasm/immunology , Azacitidine/pharmacology , Cell Line, Tumor , Decitabine , Down-Regulation/drug effects , Down-Regulation/immunology , Drug Therapy, Combination , Flow Cytometry , Humans , Kinetics , Membrane Proteins/immunology , Mesothelioma/drug therapy , Mesothelioma/genetics , Mucin-1/genetics , RNA/chemistry , RNA/genetics , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric
16.
Am J Pathol ; 178(3): 1033-42, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21356356

ABSTRACT

The diagnosis of malignant pleural mesothelioma is difficult, with the most common differential diagnoses being benign pleural diseases and metastatic adenocarcinomas (ADCA). To identify novel markers that would be able to improve diagnostic accuracy, we performed a genome-wide gene expression analysis on tumor cell lines established from pleural effusions (malignant pleural mesothelioma and lung ADCA). This analysis led to the identification of genes encoding novel and pertinent cellular and soluble markers, for which the expression was validated by real-time RT-PCR. Immunohistochemical staining of tumor biopsy specimens with anti-type III collagen antibodies showed positive labeling for mesothelioma cells but not for ADCA cells. Using enzyme-linked immunosorbent assay, we showed that the C-C motif chemokine 2 (CCL2) concentration was significantly higher in pleural effusions from patients with mesothelioma (n = 61) than in subjects with ADCA (n = 25) or with benign pleural effusions (n = 15): median (interquartile range) = 2.99 ng/ml (1.76 to 6.01) vs 0.99 ng/ml (0.51 to 1.83) and 1.47 ng/ml (0.80 to 1.56), respectively, P < 0.0001. Conversely, the galectin-3 concentration was lower in mesothelioma: 11.50 ng/ml (6.73 to 23.53) vs 24.74 ng/ml (20.42 to 70.35) and 17.64 ng/ml (14.81 to 24.68), respectively, P < 0.0001. The areas under the curve for CCL2 were 0.8030 and 0.7716 for the differentiation of mesothelioma from ADCA or benign pleural effusions, respectively. Similarly, the areas under the curve obtained for galectin-3 were 0.7980 and 0.6923, respectively. In conclusion, type III collagen, CCL2, and galectin-3 are promising new diagnostic markers for mesothelioma.


Subject(s)
Biomarkers, Tumor/metabolism , Mesothelioma/diagnosis , Pleural Neoplasms/diagnosis , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Aged , Chemokine CCL2/metabolism , Cluster Analysis , Collagen Type III/genetics , Collagen Type III/metabolism , Female , Galectin 3/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Male , Mesothelioma/genetics , Mesothelioma/pathology , Oligonucleotide Array Sequence Analysis , Pleural Effusion, Malignant/genetics , Pleural Effusion, Malignant/pathology , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Reproducibility of Results
17.
Biochem Biophys Res Commun ; 341(1): 150-7, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16412981

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycycline dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adrenoleukodystrophy/metabolism , Carcinoma, Hepatocellular/metabolism , Disease Models, Animal , ATP Binding Cassette Transporter, Subfamily D , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/genetics , Animals , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Protein Engineering/methods , Rats , Recombinant Fusion Proteins/metabolism , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...