Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 9(1): 187, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33298838

ABSTRACT

Understanding the behaviour of matter under conditions of extreme temperature, pressure, density and electromagnetic fields has profound effects on our understanding of cosmologic objects and the formation of the universe. Lacking direct access to such objects, our interpretation of observed data mainly relies on theoretical models. However, such models, which need to encompass nuclear physics, atomic physics and plasma physics over a huge dynamic range in the dimensions of energy and time, can only provide reliable information if we can benchmark them to experiments under well-defined laboratory conditions. Due to the plethora of effects occurring in this kind of highly excited matter, characterizing isolated dynamics or obtaining direct insight remains challenging. High-density plasmas are turbulent and opaque for radiation below the plasma frequency and allow only near-surface insight into ionization processes with visible wavelengths. Here, the output of a high-harmonic seeded laser-plasma amplifier using eight-fold ionized krypton as the gain medium operating at a 32.8 nm wavelength is ptychographically imaged. A complex-valued wavefront is observed in the extreme ultraviolet (XUV) beam with high resolution. Ab initio spatio-temporal Maxwell-Bloch simulations show excellent agreement with the experimental observations, revealing overionization of krypton in the plasma channel due to nonlinear laser-plasma interactions, successfully validating this four-dimensional multiscale model. This constitutes the first experimental observation of the laser ion abundance reshaping a laser-plasma amplifier. The presented approach shows the possibility of directly modelling light-plasma interactions in extreme conditions, such as those present during the early times of the universe, with direct experimental verification.

2.
Sci Rep ; 10(1): 5634, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32221373

ABSTRACT

Femtosecond (fs) x-ray pulses are a key tool to study the structure and dynamics of matter on its natural length and time scale. To complement radio-frequency accelerator-based large-scale facilities, novel laser-based mechanisms hold promise for compact laboratory-scale x-ray sources. Laser-plasma driven undulator radiation in particular offers high peak-brightness, optically synchronized few-fs pulses reaching into the few-nanometer (nm) regime. To date, however, few experiments have successfully demonstrated plasma-driven undulator radiation. Those that have, typically operated at single and comparably long wavelengths. Here we demonstrate plasma-driven undulator radiation with octave-spanning tuneability at discrete wavelengths reaching from 13 nm to 4 nm. Studying spontaneous undulator radiation is an important step towards a plasma-driven free-electron laser. Our specific setup creates a photon pulse, which closely resembles the plasma electron bunch length and charge profile and thus might enable novel methods to characterize the longitudinal electron phase space.

3.
Science ; 357(6356): 1134-1138, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28912241

ABSTRACT

The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons' quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.

4.
Rev Sci Instrum ; 88(8): 083105, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863646

ABSTRACT

We present a newly developed high harmonic beamline for time-, angle-, and carrier-envelope phase-resolved extreme ultraviolet photoemission spectroscopy on solid targets for the investigation of ultrafast band structure dynamics in the low-fs to sub-fs time regime. The source operates at a repetition rate of 10 kHz and is driven by 5 fs few-cycle near-infrared laser pulses generating high harmonic radiation with photon energies up to 120 eV at a feasible flux. The experimental end station consists of a complementary combination of photoelectron detectors which are able to spectroscopically address electron dynamics both in real and in k-space. The versatility of the source is completed by a phase-meter which allows for tracking the carrier-envelope phase for each pulse and which is synchronized to the photoelectron detectors, thus enabling phase sensitive measurements on the one hand and the selection of single attosecond pulses for ultimate time resolution in pump-probe experiments on the other hand. We demonstrate the applicability of the source by an angle- and carrier-envelope phase-resolved photoemission measurement on a tungsten (110) surface with 95 eV extreme ultraviolet radiation.

5.
Sci Rep ; 7(1): 5314, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706258

ABSTRACT

Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |µ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

6.
Nature ; 538(7625): 359-363, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762353

ABSTRACT

The frequency of electric currents associated with charge carriers moving in the electronic bands of solids determines the speed limit of electronics and thereby that of information and signal processing. The use of light fields to drive electrons promises access to vastly higher frequencies than conventionally used, as electric currents can be induced and manipulated on timescales faster than that of the quantum dephasing of charge carriers in solids. This forms the basis of terahertz (1012 hertz) electronics in artificial superlattices, and has enabled light-based switches and sampling of currents extending in frequency up to a few hundred terahertz. Here we demonstrate the extension of electronic metrology to the multi-petahertz (1015 hertz) frequency range. We use single-cycle intense optical fields (about one volt per ångström) to drive electron motion in the bulk of silicon dioxide, and then probe its dynamics by using attosecond (10-18 seconds) streaking to map the time structure of emerging isolated attosecond extreme ultraviolet transients and their optical driver. The data establish a firm link between the emission of the extreme ultraviolet radiation and the light-induced intraband, phase-coherent electric currents that extend in frequency up to about eight petahertz, and enable access to the dynamic nonlinear conductivity of silicon dioxide. Direct probing, confinement and control of the waveform of intraband currents inside solids on attosecond timescales establish a method of realizing multi-petahertz coherent electronics. We expect this technique to enable new ways of exploring the interplay between electron dynamics and the structure of condensed matter on the atomic scale.

7.
Nat Commun ; 7: 11717, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241851

ABSTRACT

The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

8.
Sci Rep ; 4: 7356, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25483626

ABSTRACT

Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.

SELECTION OF CITATIONS
SEARCH DETAIL