Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Asian Nat Prod Res ; : 1-8, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963349

ABSTRACT

The preliminary study revealed that the ethyl acetate eluate of Youngia japonica (YJ-E) could inhibit the expression of key proteins of p-p65, p-IκBα, p-IKKα/ß, and p-AKT in LPS stimulated BV2 cell. Further phytochemical study led to the isolation of eight compounds from YJ-E, including one new sesquiterpene lactone. Their structures were elucidated by several spectroscopic data, and comparing the NMR data of known compound. In addition, all of the isolates were evaluated for the anti-inflammatory effect. As a result, compounds 3 and 4 distinctly attenuated the expressions of p-IκBα, p-p65, and p-AKT in LPS stimulated BV2 cell, respectively.

2.
Chem Biodivers ; : e202401063, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924351

ABSTRACT

In the process of searching for anti-breast cancer agents, five sesquiterpene lactones (1-5), including two previously undescribed ones, yjaponica B-C (1-2), were isolated from the herb of Youngia japonica. Their structures were elucidated by spectroscopic data analyses and Marfey's method. Cytotoxic activities of all compounds against A549, U87, and 4T1 cell lines were tested using the CCK8 assay. The result showed that compound 3 possessed the highest cytotoxic activity against 4T1 cells with an IC50 value of 10.60 µM. Furthermore, compound 3 distinctly induced apoptosis, inhibited immigration, and blocked the cell cycle of 4T1 cells. In addition, compound 3 induced the production of reactive oxygen species. Further anticancer mechanism studies showed that compound 3 significantly upregulated expression of the cleaved caspase 3 and PARP, whereas it downregulated the expression of Bcl-2, cyclin D1, cyclin A2, CDK4, and CDK2. Taken together, our results demonstrate that compound 3 has a high potential of being used as a leading compound for the discovery of new anti-breast cancer agent.

3.
Fitoterapia ; 174: 105869, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378132

ABSTRACT

Fourteen sesquiterpenes, including one undescribed sesquiterpene lactone, were isolated from Youngia japonica, and their structures were identified by NMR, HRESIMS, ECD and calculated ECD. Cytotoxic activities of all isolates against A549, HeLa, and 4 T1 cell lines were detected by CCK8 assay. Among them, 2 showed obvious cytotoxic activity against A549 cells. Subsequently, the production of ROS, and apoptosis of A549 cells treated with 2 were evaluated. The result showed that 2 distinctly increased the ROS level, and induced the apoptosis of A549 cells. Further anticancer mechanism studies showed that 2 increased the expression of cleaved caspase 3. Taken together, our results demonstrated that 2 might become potential leading compounds for the treatment of lung cancer.


Subject(s)
Antineoplastic Agents , Asteraceae , Sesquiterpenes , Humans , Cell Line, Tumor , Molecular Structure , Reactive Oxygen Species , Antineoplastic Agents/pharmacology , Apoptosis , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
4.
Curr Med Sci ; 40(1): 18-27, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32166661

ABSTRACT

Alzheimer's disease (AD) shows cognitive impairments in clinic, which is multifactorial with different etiopathogenic mechanisms such as Aß deposition, neuroinflammation and neuronal dystrophy involved. Therefore, multi-targets drugs with neuroprotective, anti-amyloidogenic and anti-inflammatory properties will be effective in AD treatment. Epigallocatechin-3-gallate (EGCG) possesses a broad spectrum of pharmacological activities in the prevention and treatment of multiple neurodegenerative diseases. In the present study, we showed that oral administration of EGCG (50 mg/kg) for 4 months significantly attenuated the cognitive deficits in APP/PS1 transgenic mice, which served as AD model. Moreover, EGCG induced an improvement in dendritic integrity and expression levels of synaptic proteins in the brain of APP/PS1 mice. And EGCG exerted obvious anti-inflammatory effects, which was manifested by alleviating microglia activation, decreasing pro-inflammatory cytokine (IL-1ß) and increasing anti-inflammatory cytokines (IL-10, IL-13). Furthermore, ß-amyloid (Aß) plaques were markedly reduced in the hippocampus of 6-month old APP/PS1 mice after EGCG treatment. In conclusion, these findings indicate that EGCG improves AD-like cognitive impairments through neuroprotective, anti-amyloidogenic and anti-inflammatory effects, thus is a promising therapeutic candidate for AD.


Subject(s)
Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/genetics , Catechin/analogs & derivatives , Cognitive Dysfunction/drug therapy , Neuroprotective Agents/administration & dosage , Presenilin-1/genetics , Administration, Oral , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Catechin/administration & dosage , Catechin/pharmacology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Mutation , Neuroprotective Agents/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL