Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 193, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643137

ABSTRACT

Obesity is strongly correlated with lipotoxic cardiomyopathy, heart failure and thus mortality. The incidence of obesity has reached alarming proportions worldwide, and increasing evidence suggests that the parents' nutritional status may predispose their offspring to lipotoxic cardiomyopathy. However, to date, mechanisms underlying intergenerational heart disease risks have yet to be elucidated. Here we report that cardiac dysfunction induced by high-fat-diet (HFD) persists for two subsequent generations in Drosophila and is associated with reduced expression of two key metabolic regulators, adipose triglyceride lipase (ATGL/bmm) and transcriptional cofactor PGC-1. We provide evidence that targeted expression of ATGL/bmm in the offspring of HFD-fed parents protects them, and the subsequent generation, from cardio-lipotoxicity. Furthermore, we find that intergenerational inheritance of lipotoxic cardiomyopathy correlates with elevated systemic H3K27 trimethylation. Lowering H3K27 trimethylation genetically or pharmacologically in the offspring of HFD-fed parents prevents cardiac pathology. This suggests that metabolic homeostasis is epigenetically regulated across generations.


Subject(s)
Cardiomyopathies/genetics , Genetic Predisposition to Disease , Lipid Metabolism/genetics , Obesity/metabolism , Triglycerides/toxicity , Animals , Animals, Genetically Modified , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Histones/metabolism , Humans , Lipase/genetics , Lipase/metabolism , Male , Methylation/drug effects , Myocardium/metabolism , Myocardium/pathology , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Triglycerides/metabolism
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(7): 1831-1844, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30496794

ABSTRACT

Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.


Subject(s)
Aging , Drosophila melanogaster/physiology , Heart/physiology , Animals , Drosophila melanogaster/genetics , Epigenesis, Genetic , Exercise , Heart/physiopathology , Humans , Models, Animal , Proteostasis
4.
Mol Biol Cell ; 29(18): 2156-2164, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29995586

ABSTRACT

ATP6AP2 (also known as the [pro]renin receptor) is a type I transmembrane protein that can be cleaved into two fragments in the Golgi apparatus. While in Drosophila ATP6AP2 functions in the planar cell polarity (PCP) pathway, recent human genetic studies have suggested that ATP6AP2 could participate in the assembly of the V-ATPase in the endoplasmic reticulum (ER). Using a yeast model, we show here that the V-ATPase assembly factor Voa1 can functionally be replaced by Drosophila ATP6AP2. This rescue is even more efficient when coexpressing its binding partner ATP6AP1, indicating that these two proteins together fulfill Voa1 functions in higher organisms. Structure-function analyses in both yeast and Drosophila show that proteolytic cleavage is dispensable, while C-terminus-dependent ER retrieval is required for ATP6AP2 function. Accordingly, we demonstrate that both overexpression and lack of ATP6AP2 causes ER stress in Drosophila wing cells and that the induction of ER stress is sufficient to cause PCP phenotypes. In summary, our results suggest that full-length ATP6AP2 contributes to the assembly of the V-ATPase proton pore and that impairment of this function affects ER homeostasis and PCP signaling.


Subject(s)
Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Cell Surface/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cell Polarity/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Golgi Apparatus/metabolism , Humans , Membrane Proteins/genetics , Receptors, Cell Surface/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vacuolar Proton-Translocating ATPases/genetics
5.
PLoS Genet ; 14(5): e1007386, 2018 05.
Article in English | MEDLINE | ID: mdl-29768408

ABSTRACT

Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.


Subject(s)
Calmodulin-Binding Proteins/genetics , Drosophila/genetics , Mutation , p300-CBP Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Animals , Calmodulin-Binding Proteins/deficiency , Cell Line , Cells, Cultured , DNA Mutational Analysis , Drosophila Proteins/genetics , Female , Heart Diseases/genetics , Homozygote , Humans , Kidney Failure, Chronic/genetics , Male , Pedigree , Phenotype
6.
J Exp Med ; 214(12): 3707-3729, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29127204

ABSTRACT

The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.


Subject(s)
Autophagy , Drosophila Proteins/genetics , Genes, X-Linked , Membrane Proteins/genetics , Mutation/genetics , Proton-Translocating ATPases/genetics , Receptors, Cell Surface/genetics , Vacuolar Proton-Translocating ATPases/genetics , Adolescent , Amino Acid Sequence , Animals , Base Sequence , Blood Proteins/metabolism , Brain/embryology , Brain/pathology , Cutis Laxa/complications , Cutis Laxa/pathology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endoplasmic Reticulum-Associated Degradation , Fibroblasts/pathology , Glycosylation , Humans , Infant , Lipids/chemistry , Liver/pathology , Liver Diseases/complications , Liver Diseases/pathology , Male , Membrane Proteins/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Protein Binding , Protein Processing, Post-Translational , Proton-Translocating ATPases/deficiency , Proton-Translocating ATPases/metabolism , Psychomotor Disorders/complications , Psychomotor Disorders/pathology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/deficiency , Young Adult
7.
Cell Rep ; 8(1): 10-9, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24953654

ABSTRACT

mTOR kinase is a master growth regulator that can be stimulated by multiple signals, including amino acids and the lysosomal small GTPase Rheb. Recent studies have proposed an important role for the V-ATPase in the sensing of amino acids in the lysosomal lumen. Using the Drosophila wing as a model epithelium, we show here that the V-ATPase is required for Rheb-dependent epithelial growth. We further uncover a positive feedback loop for the control of apical protein uptake that depends on V-ATPase/mTOR signaling. This feedback loop includes Rheb-dependent transcriptional regulation of the multiligand receptor Megalin, which itself is required for Rheb-induced endocytosis. In addition, we provide evidence that long-term mTOR inhibition with rapamycin in mice causes reduction of Megalin levels and proteinuria in the proximal tubular epithelium of the kidney. Thus, our findings unravel a homeostatic mechanism that allows epithelial cells to promote protein uptake under normal conditions and to prevent uptake in lysosomal stress conditions.


Subject(s)
Endocytosis , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , TOR Serine-Threonine Kinases/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epithelium/growth & development , Epithelium/metabolism , Feedback, Physiological , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Male , Mice , Mice, Inbred C57BL , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Proteinuria/metabolism , Ras Homolog Enriched in Brain Protein , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Vacuolar Proton-Translocating ATPases/genetics
8.
EMBO J ; 32(2): 245-59, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23292348

ABSTRACT

Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V-ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co-localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E-Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V-ATPase subunits. By contrast, the V-ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.


Subject(s)
Cell Polarity/genetics , Drosophila Proteins/physiology , Endosomes/metabolism , Membrane Proteins/physiology , Animals , Animals, Genetically Modified , Cells, Cultured , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epithelium/growth & development , Epithelium/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Morphogenesis/genetics , Protein Stability , Protein Transport/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/physiology
9.
Am J Physiol Endocrinol Metab ; 293(5): E1341-51, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17848635

ABSTRACT

Dopamine D2 receptor (D2R) knockout (KO) female mice develop chronic hyperprolactinemia and pituitary hyperplasia. Our objective was to study the expression of the mitogen fibroblast growth factor (FGF2) and its receptor, FGFR1, comparatively in pituitaries from KO and wild-type (WT) female mice. We also evaluated FGF2 subcellular localization and FGF2 effects on pituitary function. FGF2-induced prolactin release showed a similar response pattern in both genotypes, even though basal and FGF2-stimulated release was higher in KO. FGF2 stimulated pituitary cellular proliferation (MTS assay and [(3)H]thymidine incorporation), with no differences between genotypes. FGF2 concentration (measured by ELISA) in whole pituitaries or cultured cells was lower in KO (P < 0.00001 and 0.00014). Immunofluorescence histochemistry showed less FGF2 in pituitaries from KO females and revealed a distinct FGF2 localization pattern between genotypes, being predominantly nuclear in KO and cytosolic in WT pituitaries. Finally, FGF2 could not be detected in the conditioned media from pituitary cultures of both genotypes. FGFR1 levels (Western blot and immunohistochemistry) were higher in pituitaries of KO. Basal concentration of phosphorylated ERKs was lower in KO cells (P = 0.018). However, when stimulated with FGF2, a significantly higher increment of ERK phosphorylation was evidenced in KO cells (P < or = 0.02). We conclude that disruption of the D2R caused an overall decrease in pituitary FGF2 levels, with an increased distribution in the nucleus, and increased FGFR1 levels. These results are important in the search for reliable prognostic indicators for patients with pituitary dopamine-resistant prolactinomas, which will make tumor-specific therapy possible.


Subject(s)
Fibroblast Growth Factor 2/metabolism , Pituitary Gland, Anterior/metabolism , Pituitary Gland, Anterior/pathology , Prolactinoma/metabolism , Receptors, Dopamine D2/deficiency , Animals , Blotting, Western , Cell Growth Processes/physiology , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Hyperplasia , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Microscopy, Fluorescence , Phosphorylation , Pituitary Gland, Anterior/cytology , Prolactin/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...