Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Biomedicines ; 12(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791022

ABSTRACT

Darier disease (DD) is an autosomal dominant disorder due to pathogenic variants of the ATP2A2 gene that causes an isolated skin manifestation based on keratinocyte disconnection and apoptosis. Systemic manifestations of DD have not been demonstrated so far, although a high incidence of neuropsychiatric syndromes suggests an involvement of the central nervous system. We report that the pathogenic ATP2A2 gene variant c.118G>A may cause cardiac involvement in patients with DD, consisting of keratinocyte and cardiomyocyte disconnection. Their common pathologic pathway, still unreported, was documented by both skin and left ventricular endomyocardial biopsies because cardiac dilatation and dysfunction appeared several decades after skin manifestations. Keratinocyte disconnection was paralleled by cardiomyocyte separation at the lateral junction. Cardiomyocyte separation was associated with cell disarray, sarcoplasmic reticulum dilatation, and increased myocyte apoptosis. Clinically, hyperkeratotic skin papules are associated with chest pain, severe muscle exhaustion, and ventricular arrhythmias that improved following administration of aminophylline, a phosphodiesterase inhibitor enhancing SERCA2 protein phosphorylation. Cardiac pathologic changes are similar to those documented in the skin, including cardiomyocyte disconnection that promotes precordial pain and cardiac arrhythmias. Phosphodiesterase inhibitors that enhance SERCA2 protein phosphorylation may substantially attenuate the symptoms.

2.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293240

ABSTRACT

The c-Jun N-terminal kinase 3 (JNK3) is a stress-responsive protein kinase primarily expressed in the central nervous system (CNS). JNK3 exhibits nuanced neurological activities, such as roles in behavior, circadian rhythms, and neurotransmission, but JNK3 is also implicated in cell death and neurodegeneration. Despite the critical role of JNK3 in neurophysiology and pathology, its localization in the brain is not fully understood due to a paucity of tools to distinguish JNK3 from other isoforms. While previous functional and histological studies suggest locales for JNK3 in the CNS, a comprehensive and higher resolution of JNK3 distribution and abundance remained elusive. Here, we sought to define the anatomical and cellular distribution of JNK3 in adult mouse brains. Data reveal the highest levels of JNK3 and pJNK3 were found in the cortex and the hippocampus. JNK3 possessed neuron-type selectivity as JNK3 was present in GABAergic, cholinergic, and dopaminergic neurons, but was not detectable in VGLUT-1-positive glutamatergic neurons and astrocytes in vivo . Intriguingly, higher JNK3 signals were found in motor neurons and relevant nuclei in the cortex, basal ganglia, brainstem, and spinal cord. While JNK3 was primarily observed in the cytosol of neurons in the cortex and the hippocampus, JNK3 appeared commonly within the nucleus in the brainstem. These distinctions suggest the potential for significant differences between JNK3 actions in distinct brain regions and cell types. Our results provide a significant improvement over previous reports of JNK3 spatial organization in the adult CNS and support continued investigation of JNK3's role in neurophysiology and pathophysiology.

3.
Genes (Basel) ; 14(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37628577

ABSTRACT

Split Hand-Foot Malformation (SHFM) is a congenital limb defect characterized by a median cleft of the hands and/or feet due to the absence/hypoplasia of the central rays. It may occur as part of a syndromic condition or as an isolated malformation. The most common of the six genetic loci identified for this condition is correlated to SHFM1 and maps in the 7q21q22 region. SHFM1 is characterized by autosomal dominant transmission, incomplete penetrance and variable expressivity. Associated features often include hearing loss, intellectual disability/developmental delay and craniofacial abnormalities. Disruption of the DLX5/DLX6 genes, mapping within the SHFM1 locus, is now known to be responsible for the phenotype. Through SNP array, we analyzed a patient affected by SHFM1 associated with deafness and an abnormality of the inner ear (incomplete partition type I); we identified a deletion in 7q21, not involving the DLX5/6 genes, but including exons 15 and 17 of DYNC1I1, known to act as exonic enhancers (eExons) of the DLX5/6 genes. We further demonstrated the role of DYNC1I1 eExons in regulating DLX5/6 expression by means of showing a reduced expression of the DLX5/6 genes through RT-PCR in a patient-derived lymphoblastoid cell line. Furthermore, our data and a review of published cases do not support the hypothesis that DLX5/6 are imprinted in humans. This work is an example of how the disruption of regulatory elements can be responsible for congenital malformations.


Subject(s)
Deafness , Limb Deformities, Congenital , Humans , Genes, Homeobox , Lower Extremity , Limb Deformities, Congenital/genetics , Deafness/genetics , Transcription Factors/genetics , Homeodomain Proteins/genetics
5.
Nat Commun ; 14(1): 2026, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041148

ABSTRACT

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Subject(s)
Goldenhar Syndrome , Animals , Mice , Goldenhar Syndrome/pathology , Facial Asymmetry , Pedigree , Forkhead Transcription Factors
6.
Eur J Hum Genet ; 31(4): 479-484, 2023 04.
Article in English | MEDLINE | ID: mdl-36599940

ABSTRACT

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.


Subject(s)
Ciliopathies , Cytoplasmic Dyneins , Ellis-Van Creveld Syndrome , Polydactyly , Humans , Ciliopathies/diagnosis , Ciliopathies/genetics , Cytoplasmic Dyneins/genetics , Ellis-Van Creveld Syndrome/diagnosis , Ellis-Van Creveld Syndrome/genetics , Mutation , Polydactyly/genetics
7.
Clin Genet ; 100(3): 268-279, 2021 09.
Article in English | MEDLINE | ID: mdl-33988253

ABSTRACT

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.


Subject(s)
DNA Copy Number Variations , Goldenhar Syndrome/genetics , Heart Defects, Congenital/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Goldenhar Syndrome/physiopathology , Humans , Infant , Infant, Newborn , Male , Microarray Analysis , Polymorphism, Single Nucleotide , Young Adult
8.
ESC Heart Fail ; 8(3): 2310-2315, 2021 06.
Article in English | MEDLINE | ID: mdl-33835720

ABSTRACT

We report a novel cardiomyopathy associated to Usher syndrome and related to combined mutation of MYO7A and Calreticulin genes. A 37-year-old man with deafness and vision impairment because of retinitis pigmentosa since childhood and a MYO7A gene mutation suggesting Usher syndrome, developed a dilated cardiomyopathy with ventricular tachyarrhythmias and recurrent syncope. At magnetic resonance cardiomyopathy was characterized by left ventricular dilatation with hypo-contractility and mitral prolapse with valve regurgitation. At left ventricular endomyocardial biopsy, it was documented cardiomyocyte disconnection because of cytoskeletal disorganization of cell-to-cell contacts, including intercalated discs, and mitochondrial damage and dysfunction with significant reduction of adenosine triphosphate production in patient cultured fibroblasts. At an extensive analysis by next-generation-sequencing of 4183 genes potentially related to the cardiomyopathy a pathogenic mutation of calreticulin was found. The cardiomyopathy appeared to be functionally and electrically stabilized by a combination therapy including carvedilol and amiodarone at a follow-up of 18 months.


Subject(s)
Cardiomyopathy, Dilated , Usher Syndromes , Adult , Calreticulin/genetics , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Child , DNA Mutational Analysis , Humans , Male , Mutation , Myosin VIIa , Myosins/genetics , Pedigree , Usher Syndromes/diagnosis , Usher Syndromes/genetics
9.
BMC Med Genomics ; 14(1): 89, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33766032

ABSTRACT

BACKGROUND: Cerebro-oculo-facio-skeletal syndrome (COFS) is a severe and progressive neurologic condition characterized by prenatal onset of arthrogryposis, cataract, microcephaly and growth failure. The aim of this study was to present a case of recurrence of the COFS syndrome and to propose a differential diagnosis flow-chart in case of prenatal findings of arthrogryposis and cataract. CASE PRESENTATION: We report a case of recurrence of COFS3 syndrome within the same family, with similar diagnostic features. In the first case the COFS syndrome remained undiagnosed, while in the second case, due to prenatal findings of arthrogryposis and cataract, genetic investigation focusing on responsible genes of COFS (ERCC5, ERCC6 and FKTN genes) was carried out. The fetus was found to be compound heterozygous for two different ERCC5 mutations, confirming the clinical suspect of COFS syndrome. A review of the literature on possible causative genes of prenatal cataract and arthrogryposis was performed and we present a flow-chart to guide differential diagnosis and possible genetic testing in case of these findings. CONCLUSION: COFS syndrome is a rare autosomic recessive condition. However, it can be suspected and diagnosed prenatally. The flow-chart illustrates a pathway to guide differential diagnosis according to the prenatal findings. Main syndromes, key testing and specific genes are included. Targeted molecular testing should be offered to the couple in order to reach a diagnosis and assess the recurrence risk for future pregnancies.


Subject(s)
Cockayne Syndrome , Adult , Arthrogryposis , Diagnosis, Differential , Female , Humans , Pregnancy
10.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530447

ABSTRACT

Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Goldenhar Syndrome/diagnosis , Goldenhar Syndrome/genetics , Computational Biology/methods , CpG Islands , Female , Gene Expression Profiling , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Male , Molecular Sequence Annotation , Phenotype
13.
Hum Mutat ; 41(12): 2087-2093, 2020 12.
Article in English | MEDLINE | ID: mdl-32906221

ABSTRACT

Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Fingers/abnormalities , Genetic Predisposition to Disease , Heart Septal Defects/genetics , Membrane Proteins/genetics , Mutation/genetics , Polydactyly/genetics , Toes/abnormalities , Adult , Animals , Child , Child, Preschool , Ellis-Van Creveld Syndrome/diagnostic imaging , Family , Female , Fingers/diagnostic imaging , Heart Septal Defects/diagnostic imaging , Humans , Male , Mice , Pedigree , Polydactyly/diagnostic imaging , Toes/diagnostic imaging
14.
Echocardiography ; 37(11): 1951-1956, 2020 11.
Article in English | MEDLINE | ID: mdl-32596833

ABSTRACT

Doppler echocardiography assessment of left ventricular (LV) filling pressures at rest and during exercise is the most widely used imaging technique to assess LV diastolic function in clinical practice. However, a sizable number of patients evaluated for suspected LV diastolic function show an inconsistency between the various parameters included in the flowchart recommended by current Doppler echocardiography guidelines and results in an undetermined LV diastolic function. Current three-dimensional echocardiography technology allows obtaining accurate measurements of the left atrial volumes and functions that have been shown to improve the diagnostic accuracy and prognostic value of the algorithms recommended for assessing both LV diastolic dysfunction and heart failure with preserved ejection fraction. Moreover, current software packages used to quantify LV size and function provide also volume-time curves showing the dynamic LV volume change throughout the cardiac cycle. Examining the diastolic part of these curves allows the measurement of several indices of LV filling that have been reported to be useful to differentiate patients with normal LV diastolic function from patients with different degrees of diastolic dysfunction. Finally, several software packages allow to obtain also myocardial deformation parameters from the three-dimensional datasets of both the left atrium and the LV providing additional functional parameters that may be useful to improve the diagnostic yield of three-dimensional echocardiography for the LV diastolic dysfunction. This review summarizes the current applications of three-dimensional echocardiography to assess LV diastolic function.


Subject(s)
Echocardiography, Three-Dimensional , Ventricular Dysfunction, Left , Diastole , Echocardiography, Doppler , Humans , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left
15.
Eur Heart J Cardiovasc Imaging ; 21(1): 10-21, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31539046

ABSTRACT

AIMS: Transthoracic 3D echocardiography (3DE) has been shown to be feasible and accurate to measure right ventricular (RV) ejection fraction (EF) when compared with cardiac magnetic resonance (CMR). However, RV EF, either measured with CMR or 3DE, has always been reported as normal (RV EF > 45%) or abnormal (RV EF ≤ 45%). We therefore sought to identify the partition values of RV EF to stratify RV dysfunction in mildly, moderately, or severely reduced as we are used to do with the left ventricle. METHODS AND RESULTS: We used 3DE to measure RV EF in 412 consecutive patients (55 ± 18 years, 65% men) with various cardiac conditions who were followed for 3.7 ± 1.4 years to obtain the partition values which defined mild, moderate, and severe reduction of RV EF (derivation cohort). Then, the prognostic value of these partition values was tested in an independent population of 446 patients (67 ± 14 years, 58% men) (validation cohort). During follow-up, we recorded 59 cardiac deaths (14%) in the derivation cohort. Using K-Adaptive partitioning for survival data algorithm we identified four groups of patients with significantly different mortality according to RV EF: very low > 46%, 40.9% < low ≤ 46%, 32.1% < moderate ≤ 40.9%, and high ≤ 32.1%. To make the partition values easier to remember, we approximated them to 45%, 40%, and 30%. During 4.1 ± 1.2 year follow-up, 38 cardiac deaths and 88 major adverse cardiac events (MACE) (cardiac death, non-fatal myocardial infarction, ventricular fibrillation, or admission for heart failure) occurred in the validation cohort. The partition values of RV EF identified in the derivation cohort were able to stratify both the risk of cardiac death (log-rank = 100.1; P < 0.0001) and MACEs (log-rank = 117.6; P < 0.0001) in the validation cohort too. CONCLUSION: Our study confirms the independent prognostic value of RV EF in patients with heart diseases, and identifies the partition values of RV EF to stratify the risk of cardiac death and MACE.


Subject(s)
Echocardiography, Three-Dimensional , Ventricular Dysfunction, Right , Female , Humans , Male , Prognosis , Stroke Volume , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
16.
Am J Med Genet A ; 182(3): 508-512, 2020 03.
Article in English | MEDLINE | ID: mdl-31880396

ABSTRACT

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2) is a rare autosomal recessive neuromuscular disorder characterized by arthrogryposis multiplex congenita and prenatal fractures of the long bones, with poor prognosis. The most affected patients present with biallelic loss-of-function nucleotide variants in ASCC1 gene, coding a subunit of the transcriptional coactivator ASC-1 complex, although the exact pathogenesis is yet unknown. This work describes the first case of SMABF2 in a stillbirth with documented evolution of the disease in the prenatal period. A microdeletion copy number variant (CNV) of about 64 Kb, involving four exons of ASCC1, was firstly detected by microarray analysis, requested for arthrogryposis and hydrops. Subsequent exome analysis disclosed a nucleotide variant of the same gene [c.1027C>T; (p. Arg343*)], resulting in the introduction of a premature termination codon. This stillbirth represents the first case of ASCC1 compound heterozygosity, due to an exonic microdeletion and a nucleotide variant, expanding the mutational spectrum of this gene. It also provides further evidence that exonic CNVs are an underestimated cause of disease-alleles and that the integrated use of the last generation genetic analysis tools, together with careful clinical evaluations, are fundamental for the characterization of rare diseases even in the prenatal setting.


Subject(s)
Carrier Proteins/genetics , Congenital Abnormalities/genetics , Fractures, Bone/genetics , Muscular Atrophy, Spinal/genetics , Codon, Nonsense/genetics , Congenital Abnormalities/diagnosis , Congenital Abnormalities/physiopathology , DNA Copy Number Variations/genetics , Exome/genetics , Female , Fractures, Bone/diagnosis , Fractures, Bone/physiopathology , Genetic Association Studies , Genetic Testing , Humans , Male , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/physiopathology , Mutation, Missense/genetics , Pedigree , Pregnancy , Stillbirth/epidemiology , Stillbirth/genetics , Exome Sequencing
18.
Clin Genet ; 96(3): 246-253, 2019 09.
Article in English | MEDLINE | ID: mdl-31090057

ABSTRACT

Two distinct genomic disorders have been linked to Xq28-gains, namely Xq28-duplications including MECP2 and Int22h1/Int22h2-mediated duplications involving RAB39B. Here, we describe six unrelated patients, five males and one female, with Xq28-gains distal to MECP2 and proximal to the Int22h1/Int22h2 low copy repeats. Comparison with patients carrying overlapping duplications in the literature defined the MidXq28-duplication syndrome featuring intellectual disability, language impairment, structural brain malformations, microcephaly, seizures and minor craniofacial features. The duplications overlapped for 108 kb including FLNA, RPL10 and GDI1 genes, highly expressed in brain and candidates for the neurologic phenotype.


Subject(s)
Chromosome Duplication , Chromosomes, Human, X , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , rab GTP-Binding Proteins/genetics , Adolescent , Adult , Brain/abnormalities , Brain/diagnostic imaging , Child , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Pedigree , Phenotype , Young Adult
19.
Hum Mutat ; 39(10): 1428-1441, 2018 10.
Article in English | MEDLINE | ID: mdl-30007050

ABSTRACT

Atrioventricular septal defect (AVSD) may occur as part of a complex disorder (e.g., Down syndrome, heterotaxy), or as isolate cardiac defect. Multiple lines of evidence support a role of calcineurin/NFAT signaling in AVSD, and mutations in CRELD1, a protein functioning as a regulator of calcineurin/NFAT signaling have been reported in a small fraction of affected subjects. In this study, 22 patients with isolated AVSD and 38 with AVSD and heterotaxy were screened for NFATC1 gene mutations. Sequence analysis identified three missense variants in three individuals, including a subject with isolated AVSD [p.(Ala367Val)], an individual with AVSD and heterotaxy [p.(Val210Met)], and a subject with AVSD, heterotaxy, and oculo-auriculo-vertebral spectrum (OAVS) [p.(Ala696Thr)], respectively. The latter was also heterozygous for a missense change in TBX1 [p.(Pro86Leu)]. Targeted resequencing of genes associated with AVSD, heterotaxy, or OAVS excluded additional hits in the three mutation-positive subjects. Functional characterization of NFATC1 mutants documented defective nuclear translocation and decreased transcriptional transactivation activity. When expressed in zebrafish, the three NFATC1 mutants caused cardiac looping defects and altered atrioventricular canal patterning, providing evidence of their functional relevance in vivo. Our findings support a role of defective NFATC1 function in the etiology of isolated and heterotaxy-related AVSD.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Heart Septal Defects/genetics , Heterozygote , Mutation, Missense , NFATC Transcription Factors/genetics , Alleles , Animals , Chromosome Deletion , Female , Fluorescent Antibody Technique , Gene Expression , Genes, Reporter , Heart Septal Defects/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Male , NFATC Transcription Factors/metabolism , Phenotype , Sequence Analysis, DNA , Zebrafish
20.
Integr Blood Press Control ; 11: 47-56, 2018.
Article in English | MEDLINE | ID: mdl-29872338

ABSTRACT

Morning hours are the period of the day characterized by the highest incidence of major cardiovascular events including myocardial infarction, sudden death or stroke. They are also characterized by important neurohormonal changes, in particular, the activation of sympathetic nervous system which usually leads to a rapid increase in blood pressure (BP), known as morning blood pressure surge (MBPS). It was hypothesized that excessive MBPS may be causally involved in the pathogenesis of cardiovascular events occurring in the morning by inducing hemodynamic stress. A number of studies support an independent relationship of MBPS with organ damage, cerebrovascular complications and mortality, although some heterogeneity exists in the available evidence. This may be due to ethnic differences, methodological issues and the confounding relationship of MBPS with other features of 24-hour BP profile, such as nocturnal dipping or BP variability. Several studies are also available dealing with treatment effects on MBPS and indicating the importance of long-acting antihypertensive drugs in this regard. This paper provides an overview of pathophysiologic, methodological, prognostic and therapeutic aspects related to MBPS.

SELECTION OF CITATIONS
SEARCH DETAIL
...