Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 900: 165627, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37495128

ABSTRACT

Shrubland ecosystems across Europe face a range of threats including the potential impacts of climate change. Within the INCREASE project, six shrubland ecosystems along a European climatic gradient were exposed to ecosystem-level year-round experimental nighttime warming and long-term, repeated growing season droughts. We quantified the ecosystem level CO2 fluxes, i.e. gross primary productivity (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE), in control and treatment plots and compared the treatment effects along the Gaussen aridity index. In general, GPP exhibited higher sensitivity to drought and warming than Reco and was found to be the dominant contributor to changes in overall NEE. Across the climate gradient, northern sites were more likely to have neutral to positive responses of NEE, i.e. increased CO2 uptake, to drought and warming partly due to seasonal rewetting. While an earlier investigation across the same sites showed a good cross-site relationship between soil respiration responses to climate over the Gaussen aridity index, the responses of GPP, Reco and NEE showed a more complex response pattern suggesting that site-specific ecosystem traits, such as different growing season periods and plant species composition, affected the overall response pattern of the ecosystem-level CO2 fluxes. We found that the observed response patterns of GPP and Reco rates at the six sites could be explained well by the hypothesized position of each site on site-specific soil moisture response curves of GPP/Reco fluxes. Such relatively simple, site-specific analyses could help improve our ability to explain observed CO2 flux patterns in larger meta-analyses as well as in larger-scale model upscaling exercises and thereby help improve our ability to project changes in ecosystem CO2 fluxes in response to future climate change.


Subject(s)
Droughts , Ecosystem , Carbon Dioxide/analysis , Carbon Cycle , Soil , Respiration , Seasons
2.
Glob Chang Biol ; 27(21): 5629-5642, 2021 11.
Article in English | MEDLINE | ID: mdl-34363286

ABSTRACT

Net ecosystem CO2 exchange is the result of net carbon uptake by plant photosynthesis and carbon loss by soil and plant respiration. Temperature increases due to climate change can modify the equilibrium between these fluxes and trigger ecosystem-climate feedbacks that can accelerate climate warming. As these dynamics have not been well studied in dry shrublands, we subjected a Mediterranean shrubland to a 10-year night-time temperature manipulation experiment that analyzed ecosystem carbon fluxes associated with dominant shrub species, together with several plant parameters related to leaf photosynthesis, leaf morphology, and canopy structure. Under moderate night-time warming (+0.9°C minimum daily temperature, no significant reduction in soil moisture), Cistus monspeliensis formed shoots with more leaves that were relatively larger and denser canopies that supported higher plant-level photosynthesis rates. Given that ecosystem respiration was not affected, this change in canopy morphology led to a significant enhancement in net ecosystem exchange (+47% at midday). The observed changes in shoot and canopy morphology were attributed to the improved nutritional state of the warmed plants, primarily due to changes in nitrogen cycling and higher nitrogen resorption efficiency in senescent leaves. Our results show that modifications in plant morphology triggered by moderate warming affected ecosystem CO2  fluxes, providing the first evidence for enhanced daytime carbon uptake in a dry shrubland ecosystem under experimental warming.


Subject(s)
Carbon , Ecosystem , Carbon Cycle , Carbon Dioxide , Climate Change , Nitrogen , Photosynthesis , Plant Leaves , Soil
3.
Environ Sci Technol ; 55(10): 6613-6622, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33908766

ABSTRACT

Trees and urban forests remove particulate matter (PM) from the air through the deposition of particles on the leaf surface, thus helping to improve air quality and reduce respiratory problems in urban areas. Leaf deposited PM, in turn, is either resuspended back into the atmosphere, washed off during rain events or transported to the ground with litterfall. The net amount of PM removed depends on crown and leaf characteristics, air pollution concentration, and weather conditions, such as wind speed and precipitation. Many existing deposition models, such as i-Tree Eco, calculate PM2.5 removal using a uniform deposition velocity function and resuspension rate for all tree species, which vary based on leaf area and wind speed. However, model results are seldom validated with experimental data. In this study, we compared i-Tree Eco calculations of PM2.5 deposition with fluxes determined by eddy covariance assessments (canopy scale) and particulate matter accumulated on leaves derived from measurements of vacuum/filtration technique as well as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (leaf scale). These investigations were carried out at the Capodimonte Royal Forest in Naples. Modeled and measured fluxes showed good overall agreement, demonstrating that net deposition mostly happened in the first part of the day when atmospheric PM concentration is higher, followed by high resuspension rates in the second part of the day, corresponding with increased wind speeds. The sensitivity analysis of the model parameters showed that a better representation of PM deposition fluxes could be achieved with adjusted deposition velocities. It is also likely that the standard assumption of a complete removal of particulate matter, after precipitation events that exceed the water storage capacity of the canopy (Ps), should be reconsidered to better account for specific leaf traits. These results represent the first validation of i-Tree Eco PM removal with experimental data and are a starting point for improving the model parametrization and the estimate of particulate matter removed by urban trees.


Subject(s)
Air Pollutants , Air Pollution , Quercus , Air Pollutants/analysis , Environmental Monitoring , Forests , Particulate Matter/analysis , Plant Leaves/chemistry , Trees
4.
Glob Chang Biol ; 26(3): 1739-1753, 2020 03.
Article in English | MEDLINE | ID: mdl-31578796

ABSTRACT

Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carry-over of fixed carbon between years, while the second implies far too great an increase in respiration during stand development-leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.


Subject(s)
Carbon , Photosynthesis , Biomass , Carbon Dioxide , Cell Respiration , Forests , Plant Leaves , Trees
5.
Plant Cell Environ ; 42(6): 1929-1938, 2019 06.
Article in English | MEDLINE | ID: mdl-30663094

ABSTRACT

Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13 C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat-stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat-stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.


Subject(s)
Butadienes/metabolism , Eucalyptus/metabolism , Hemiterpenes/metabolism , Hot Temperature , Monoterpenes/metabolism , Volatile Organic Compounds/metabolism , Carbon Dioxide , Italy , Photosynthesis , Plant Leaves/metabolism , Staining and Labeling
6.
Sci Total Environ ; 627: 1242-1252, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30857089

ABSTRACT

Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.


Subject(s)
Carbon Sequestration , Climate Change , Environmental Monitoring , Plants , Carbon , Carbon Isotopes , Droughts , Ecosystem , Italy , Plant Roots , Rain , Rhizosphere
7.
Sci Rep ; 7: 43952, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256623

ABSTRACT

Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.

8.
Plant Physiol Biochem ; 108: 530-538, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27599182

ABSTRACT

Norway spruce (Picea abies) is a strong emitter of biogenic volatile organic compounds (BVOCs). In the present study we investigated how shoot canopy position and high levels of stressors such as high temperature and ozone concentration, affect BVOC emission rates by means of in-situ and ex-situ experimental measurements. Therefore, BVOC emission from current-year spruce shoots was investigated under field and manipulated (temperature, ozone) laboratory conditions. Emitted BVOCs were sampled on desorption tubes, coupled with gas-exchange measurements of CO2 assimilation rate and stomatal conductance, and detected by gas chromatography coupled with mass spectrometry. Total BVOC emission rates from sun shoots under standard conditions were higher than those from shade shoots, although this was significant only in July, on the contrary, only α-pinene and γ-terpinene emission rates showed significant differences between sun and shade acclimated shoots in August. Limonene, α-pinene, ß-pinene, and myrcene were identified as the most abundant BVOCs in both campaigns with emission rates above 0.2 nmol m-2 s-1. Ex-situ measurements revealed a significantly higher total BVOC emissions under high temperature level (40 °C) by ca. 175% as compared with standard temperature (30 °C), while a short-term fumigation of acute O3 concentration (200 ppb) had no effect on BVOC emissions and its spectrum. These findings might have a relevance considering the role of these compounds in protecting against oxidative stress and their possible stimulation in particular stressful conditions. Implication of such results into emission models may contribute to a more accurate estimation of BVOC emissions for Central European mountain regions dominated by Norway spruce forests and their rate under predicted climate change.


Subject(s)
Picea/physiology , Plant Shoots/metabolism , Terpenes/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Czech Republic , Ozone , Temperature , Trees/physiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
9.
Environ Sci Pollut Res Int ; 23(19): 19541-50, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27392620

ABSTRACT

There is a growing interest to identify and quantify the benefits provided by the presence of trees in urban environment in order to improve the environmental quality in cities. However, the evaluation and estimate of plant efficiency in removing atmospheric pollutants is rather complicated, because of the high number of factors involved and the difficulty of estimating the effect of the interactions between the different components. In this study, the EMEP MSC-W model was implemented to scale-down to tree-level and allows its application to an industrial-urban green area in Northern Italy. Moreover, the annual outputs were compared with the outputs of UFORE (nowadays i-Tree), a leading model for urban forest applications. Although, EMEP/MSC-W model and UFORE are semi-empirical models designed for different applications, the comparison, based on O3, NO2 and PM10 removal, showed a good agreement in the estimates and highlights how the down-scaling methodology presented in this study may have significant opportunities for further developments.


Subject(s)
Air Pollutants/chemistry , Air Pollutants/metabolism , Cities , Environmental Monitoring , Trees/physiology , Italy , Models, Theoretical
10.
J Environ Qual ; 45(1): 224-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26828178

ABSTRACT

A crucial issue in urban environments is the interaction between urban trees and atmospheric pollution, particularly ozone (O). Ozone represents one of the most harmful pollutants in urban and peri-urban environments, especially in warm climates. Besides the large interest in reducing anthropogenic and biogenic precursors of O emissions, there is growing scientific activity aimed at understanding O removal by vegetation, particularly trees. The intent of this paper is to provide the state of the art and suggestions to improve future studies of O fluxes and to discuss implications of O flux studies to maximize environmental services through the planning and management of urban forests. To evaluate and quantify the potential of O removal in urban and peri-urban forests, we describe experimental approaches to measure O fluxes, distinguishing laboratory experiments, field measurements, and model estimates, including recent case studies. We discuss the strengths and weaknesses of the different approaches and conclude that the combination of the three levels of investigation is essential for estimating O removal by urban trees. We also comment on the implications of these findings for planning and management of urban forests, suggesting some key issues that should be considered to maximize O removal by urban and peri-urban forests.


Subject(s)
Air Pollutants , Forests , Ozone , Environmental Monitoring , Trees
11.
Environ Pollut ; 208(Pt B): 336-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552537

ABSTRACT

Fluxes of CO2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters.


Subject(s)
Air Pollutants/analysis , Photosynthesis/physiology , Poaceae/metabolism , Terpenes/analysis , Ultraviolet Rays , Butadienes , Carbon , Carbon Dioxide , Environmental Monitoring , Europe , Hemiterpenes , Monoterpenes , Pentanes , Plant Leaves , Plants
12.
Tree Physiol ; 33(9): 960-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24044943

ABSTRACT

The temporal variability of ecosystem respiration (RECO) has been reported to have important effects on the temporal variability of net ecosystem exchange, the net amount of carbon exchanged between an ecosystem and the atmosphere. However, our understanding of ecosystem respiration is rather limited compared with photosynthesis or gross primary productivity, particularly in Mediterranean montane ecosystems. In order to investigate how environmental variables and forest structure (tree classes) affect different respiration components and RECO in a Mediterranean beech forest, we measured soil, stem and leaf CO2 efflux rates with dynamic chambers and RECO by the eddy-covariance technique over 1 year (2007-2008). Ecosystem respiration showed marked seasonal variation, with the highest rates in spring and autumn and the lowest in summer. We found that the soil respiration (SR) was mainly controlled by soil water content below a threshold value of 0.2 m(3) m(-3), above which the soil temperature explained temporal variation in SR. Stem CO2 effluxes were influenced by air temperature and difference between tree classes with higher rates measured in dominant trees than in co-dominant ones. Leaf respiration (LR) varied significantly between the two canopy layers considered. Non-structural carbohydrates were a very good predictor of LR variability. We used these measurements to scale up respiration components to ecosystem respiration for the whole canopy and obtained cumulative amounts of carbon losses over the year. Based on the up-scaled chamber measurements, the relative contributions of soil, stem and leaves to the total annual CO2 efflux were: 56, 8 and 36%, respectively. These results confirm that SR is the main contributor of ecosystem respiration and provided an insight on the driving factors of respiration in Mediterranean montane beech forests.


Subject(s)
Ecosystem , Fagus/physiology , Trees/physiology , Aerobiosis , Carbon Dioxide/analysis , Italy , Mediterranean Region , Plant Leaves/physiology , Plant Stems/metabolism , Soil/chemistry , Temperature , Time Factors
13.
Physiol Plant ; 142(3): 297-304, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21361963

ABSTRACT

Poplars (Populus sp.) are among the strongest isoprene (Iso)-emitting plants. Ten poplar genotypes belonging to four different species were grown under the same environmental conditions in a common garden experiment, to study the influence of the genetic variability on Iso emission and on the relationship between Iso and photosynthesis. Photosynthesis ranged from 13 to 20 µmol CO(2) m(-2) s(-1) , whereas Iso emission ranged from 18.2 to 45.2 nmol m(-2) s(-1) . There was no clear association between Iso emission and photosynthesis. In most genotypes, photosynthetic capacity developed earlier than Iso emission capacity. The emission of Iso was inversely correlated with the intercellular CO(2) concentration (C(i) ) and positively correlated with instantaneous water use efficiency. It is speculated that, by regulating C(i) , stomatal opening also indirectly controls Iso emission in poplars. A positive linear correlation between the fraction of recently assimilated carbon emitted as Iso and Iso emission rate was found. The slope of this relationship indicated that each nanomole of Iso emitted requires a fixed fraction of photosynthetic carbon regardless of the intra- and interspecific variability in the Populus genus, and of leaf ontogeny. A comparison with data from recent studies showed that the slope of this relationship increases in drought-stressed leaves. However, this might be explained by an increasing contribution of carbon sources for Iso biosynthesis from stored photosynthates. If this is true, then the amount of carbon directly shunted from photosynthesis into Iso is constant in all poplars and is not influenced by abiotic stresses.


Subject(s)
Butadienes/analysis , Carbon Dioxide/metabolism , Hemiterpenes/analysis , Pentanes/analysis , Populus/genetics , Populus/physiology , Water/physiology , Carbon Cycle/physiology , Genotype , Photosynthesis/physiology , Plant Stomata/growth & development , Plant Stomata/physiology , Populus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...